Learned convex regularizers for inverse problems

We consider the variational reconstruction framework for inverse problems and propose to learn a data-adaptive input-convex neural network (ICNN) as the regularization functional. The ICNN-based convex regularizer is trained adversarially to discern ground-truth images from unregularized reconstruct...

Full description

Saved in:
Bibliographic Details
Main Authors Mukherjee, Subhadip, Dittmer, Sören, Shumaylov, Zakhar, Lunz, Sebastian, Öktem, Ozan, Schönlieb, Carola-Bibiane
Format Journal Article
LanguageEnglish
Published 06.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the variational reconstruction framework for inverse problems and propose to learn a data-adaptive input-convex neural network (ICNN) as the regularization functional. The ICNN-based convex regularizer is trained adversarially to discern ground-truth images from unregularized reconstructions. Convexity of the regularizer is desirable since (i) one can establish analytical convergence guarantees for the corresponding variational reconstruction problem and (ii) devise efficient and provable algorithms for reconstruction. In particular, we show that the optimal solution to the variational problem converges to the ground-truth if the penalty parameter decays sub-linearly with respect to the norm of the noise. Further, we prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations. To demonstrate the performance of our approach for solving inverse problems, we consider the tasks of deblurring natural images and reconstructing images in computed tomography (CT), and show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
AbstractList We consider the variational reconstruction framework for inverse problems and propose to learn a data-adaptive input-convex neural network (ICNN) as the regularization functional. The ICNN-based convex regularizer is trained adversarially to discern ground-truth images from unregularized reconstructions. Convexity of the regularizer is desirable since (i) one can establish analytical convergence guarantees for the corresponding variational reconstruction problem and (ii) devise efficient and provable algorithms for reconstruction. In particular, we show that the optimal solution to the variational problem converges to the ground-truth if the penalty parameter decays sub-linearly with respect to the norm of the noise. Further, we prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations. To demonstrate the performance of our approach for solving inverse problems, we consider the tasks of deblurring natural images and reconstructing images in computed tomography (CT), and show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
Author Shumaylov, Zakhar
Mukherjee, Subhadip
Dittmer, Sören
Lunz, Sebastian
Öktem, Ozan
Schönlieb, Carola-Bibiane
Author_xml – sequence: 1
  givenname: Subhadip
  surname: Mukherjee
  fullname: Mukherjee, Subhadip
– sequence: 2
  givenname: Sören
  surname: Dittmer
  fullname: Dittmer, Sören
– sequence: 3
  givenname: Zakhar
  surname: Shumaylov
  fullname: Shumaylov, Zakhar
– sequence: 4
  givenname: Sebastian
  surname: Lunz
  fullname: Lunz, Sebastian
– sequence: 5
  givenname: Ozan
  surname: Öktem
  fullname: Öktem, Ozan
– sequence: 6
  givenname: Carola-Bibiane
  surname: Schönlieb
  fullname: Schönlieb, Carola-Bibiane
BackLink https://doi.org/10.48550/arXiv.2008.02839$$DView paper in arXiv
BookMark eNotzrtqw0AQheEtnCJ28gCpvC8gZXZXeyuDyQ0EadyLkXbWCGTJjIix_fRxnFQH_uLwLcVinEYS4klBWQVr4Rn51B9LDRBK0MHEewE1IY-UZDeNRzpJpt33gNxfiGeZJ5b9NfNM8sBTO9B-fhB3GYeZHv93JbZvr9vNR1F_vX9uXuoCnY9FG6033rnWZpUVqkS5C8F1Aa-FSHcJkLxOugKvssu2isoDRESlTVJoVmL9d3sjNwfu98jn5pfe3OjmByzHQIg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.2008.02839
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2008_02839
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a679-b9573766b5f1f1a1defc886c8ab5fee2cd0ae72d24071f6f54917009aa123d1a3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:44:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-b9573766b5f1f1a1defc886c8ab5fee2cd0ae72d24071f6f54917009aa123d1a3
OpenAccessLink https://arxiv.org/abs/2008.02839
ParticipantIDs arxiv_primary_2008_02839
PublicationCentury 2000
PublicationDate 2020-08-06
PublicationDateYYYYMMDD 2020-08-06
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-06
  day: 06
PublicationDecade 2020
PublicationYear 2020
Score 1.7757628
SecondaryResourceType preprint
Snippet We consider the variational reconstruction framework for inverse problems and propose to learn a data-adaptive input-convex neural network (ICNN) as the...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Statistics - Machine Learning
Title Learned convex regularizers for inverse problems
URI https://arxiv.org/abs/2008.02839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07TwMxDLbaTiwIBKg8lYH1RJLL4zJWiFIxwFKk25Dzkm6p0LWgil9PkjsEC6vjxXnos5XPnwFuayfStcXc9mGwEo6a_OZoJYSO2nrpLBa1z2e1ehVPrWwnQH56YbDfd5-DPrDd3g1Ux4SAZgpTzjNl6_GlHT4nixTX6P_rl3LMYvoDEssjOByzO7IYjuMYJmFzArRomAZPCsN7T_oy_r3vvlLmRVLOSLpN5kYEMg532Z7Cevmwvl9V46CCCpU2lTVSp4CVlZFFhsyH6JpGuQaTJQTuPMWguS_FU1QxlWRZFc8gJtjwDOszmKVaP8yBYERacxZUranwhlnpg1VeIKWxYUKfw7yE9_Y-aFGMUyRz5Bf_L13CAc9lYmY6qCuY7fqPcJ2wdGdvyoZ-A_ZDc_o
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learned+convex+regularizers+for+inverse+problems&rft.au=Mukherjee%2C+Subhadip&rft.au=Dittmer%2C+S%C3%B6ren&rft.au=Shumaylov%2C+Zakhar&rft.au=Lunz%2C+Sebastian&rft.date=2020-08-06&rft_id=info:doi/10.48550%2Farxiv.2008.02839&rft.externalDocID=2008_02839