Incorporating variable viscosity in vorticity-based formulations for Brinkman equations

In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite...

Full description

Saved in:
Bibliographic Details
Main Authors Anaya, Verónica, Gómez-Vargas, Bryan, Mora, David, Ruiz-Baier, Ricardo
Format Journal Article
LanguageEnglish
Published 05.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates which are further confirmed through computational examples
AbstractList In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates which are further confirmed through computational examples
Author Mora, David
Anaya, Verónica
Gómez-Vargas, Bryan
Ruiz-Baier, Ricardo
Author_xml – sequence: 1
  givenname: Verónica
  surname: Anaya
  fullname: Anaya, Verónica
– sequence: 2
  givenname: Bryan
  surname: Gómez-Vargas
  fullname: Gómez-Vargas, Bryan
– sequence: 3
  givenname: David
  surname: Mora
  fullname: Mora, David
– sequence: 4
  givenname: Ricardo
  surname: Ruiz-Baier
  fullname: Ruiz-Baier, Ricardo
BackLink https://doi.org/10.48550/arXiv.1905.01779$$DView paper in arXiv
BookMark eNotj8tOwzAURL2ABRQ-gBX-gQQ7vvFjCRWPSpXYVGIZ3Tg2skjs4qQR_Xv6Wo3OSDPSuSVXMUVHyANnJei6Zk-Y_8JccsPqknGlzA35WkWb8jZlnEL8pjPmgG3v6BxGm8Yw7WmIdE55CvYARYuj66hPedj1h0WK4xHoSw7xZ8BI3e_uXN-Ra4_96O4vuSCbt9fN8qNYf76vls_rAqUyhQZjDbSdR6mNULzSzmuUFXDGrOpAVaCtcBK0tC3TignwDBAEVtJLrsWCPJ5vT2bNNocB8745GjYnQ_EPczdOmA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1905.01779
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1905_01779
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a679-849c94bdfa68937128ef8a624100c7d47248c3e6486cb087034f04a43a26f6183
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-849c94bdfa68937128ef8a624100c7d47248c3e6486cb087034f04a43a26f6183
OpenAccessLink https://arxiv.org/abs/1905.01779
ParticipantIDs arxiv_primary_1905_01779
PublicationCentury 2000
PublicationDate 2019-05-05
PublicationDateYYYYMMDD 2019-05-05
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-05
  day: 05
PublicationDecade 2010
PublicationYear 2019
Score 1.732012
SecondaryResourceType preprint
Snippet In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Numerical Analysis
Title Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
URI https://arxiv.org/abs/1905.01779
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5tT15EUalPcvAaXLLZPI4i1geol4q9lckLirjVbl3sv3eSXdGLxyRz-sLwfUMm3xByrpwOXCnLqgicCdCeQQmCVZqD1JZ7yHPIHh7l7bO4n1WzAaE_f2Fg9bVoO39g21wgWyVXTaXMkAw5Ty1bN0-z7nEyW3H18b9xqDHz1h-SmOyQ7V7d0cvuOnbJINR75OUueUVmv2DkCdpidZr-K9F20bjUMrWhi5q2y9zfvN6wxCueJi3ZT9Zq0oJiFV-_vkFNw0fnzt3sk-nkenp1y_p5BgykMkwL44ywPiIIyYWO6xA1SKTQonDKC8WFdmWQQktnC8yjUsRCgCiByygx9Q7IqF7WYUyoi2BNLE3UFvWDR5GHueTAFIXH2LI6JOOMwvy9s6yYJ4DmGaCj_4-OyRbKAZPb-aoTMlqvPsMpUu7anmXcvwFv9oLN
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+variable+viscosity+in+vorticity-based+formulations+for+Brinkman+equations&rft.au=Anaya%2C+Ver%C3%B3nica&rft.au=G%C3%B3mez-Vargas%2C+Bryan&rft.au=Mora%2C+David&rft.au=Ruiz-Baier%2C+Ricardo&rft.date=2019-05-05&rft_id=info:doi/10.48550%2Farxiv.1905.01779&rft.externalDocID=1905_01779