Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
05.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this brief note, we introduce a non-symmetric mixed finite element
formulation for Brinkman equations written in terms of velocity, vorticity and
pressure with non-constant viscosity. The analysis is performed by the
classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable
finite element pair for Stokes approximating velocity and pressure can be
coupled with a generic discrete space of arbitrary order for the vorticity. We
establish optimal a priori error estimates which are further confirmed through
computational examples |
---|---|
AbstractList | In this brief note, we introduce a non-symmetric mixed finite element
formulation for Brinkman equations written in terms of velocity, vorticity and
pressure with non-constant viscosity. The analysis is performed by the
classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable
finite element pair for Stokes approximating velocity and pressure can be
coupled with a generic discrete space of arbitrary order for the vorticity. We
establish optimal a priori error estimates which are further confirmed through
computational examples |
Author | Mora, David Anaya, Verónica Gómez-Vargas, Bryan Ruiz-Baier, Ricardo |
Author_xml | – sequence: 1 givenname: Verónica surname: Anaya fullname: Anaya, Verónica – sequence: 2 givenname: Bryan surname: Gómez-Vargas fullname: Gómez-Vargas, Bryan – sequence: 3 givenname: David surname: Mora fullname: Mora, David – sequence: 4 givenname: Ricardo surname: Ruiz-Baier fullname: Ruiz-Baier, Ricardo |
BackLink | https://doi.org/10.48550/arXiv.1905.01779$$DView paper in arXiv |
BookMark | eNotj8tOwzAURL2ABRQ-gBX-gQQ7vvFjCRWPSpXYVGIZ3Tg2skjs4qQR_Xv6Wo3OSDPSuSVXMUVHyANnJei6Zk-Y_8JccsPqknGlzA35WkWb8jZlnEL8pjPmgG3v6BxGm8Yw7WmIdE55CvYARYuj66hPedj1h0WK4xHoSw7xZ8BI3e_uXN-Ra4_96O4vuSCbt9fN8qNYf76vls_rAqUyhQZjDbSdR6mNULzSzmuUFXDGrOpAVaCtcBK0tC3TignwDBAEVtJLrsWCPJ5vT2bNNocB8745GjYnQ_EPczdOmA |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.1905.01779 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 1905_01779 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a679-849c94bdfa68937128ef8a624100c7d47248c3e6486cb087034f04a43a26f6183 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:49:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a679-849c94bdfa68937128ef8a624100c7d47248c3e6486cb087034f04a43a26f6183 |
OpenAccessLink | https://arxiv.org/abs/1905.01779 |
ParticipantIDs | arxiv_primary_1905_01779 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-05 |
PublicationDateYYYYMMDD | 2019-05-05 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationYear | 2019 |
Score | 1.732012 |
SecondaryResourceType | preprint |
Snippet | In this brief note, we introduce a non-symmetric mixed finite element
formulation for Brinkman equations written in terms of velocity, vorticity and
pressure... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Numerical Analysis |
Title | Incorporating variable viscosity in vorticity-based formulations for Brinkman equations |
URI | https://arxiv.org/abs/1905.01779 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5tT15EUalPcvAaXLLZPI4i1geol4q9lckLirjVbl3sv3eSXdGLxyRz-sLwfUMm3xByrpwOXCnLqgicCdCeQQmCVZqD1JZ7yHPIHh7l7bO4n1WzAaE_f2Fg9bVoO39g21wgWyVXTaXMkAw5Ty1bN0-z7nEyW3H18b9xqDHz1h-SmOyQ7V7d0cvuOnbJINR75OUueUVmv2DkCdpidZr-K9F20bjUMrWhi5q2y9zfvN6wxCueJi3ZT9Zq0oJiFV-_vkFNw0fnzt3sk-nkenp1y_p5BgykMkwL44ywPiIIyYWO6xA1SKTQonDKC8WFdmWQQktnC8yjUsRCgCiByygx9Q7IqF7WYUyoi2BNLE3UFvWDR5GHueTAFIXH2LI6JOOMwvy9s6yYJ4DmGaCj_4-OyRbKAZPb-aoTMlqvPsMpUu7anmXcvwFv9oLN |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+variable+viscosity+in+vorticity-based+formulations+for+Brinkman+equations&rft.au=Anaya%2C+Ver%C3%B3nica&rft.au=G%C3%B3mez-Vargas%2C+Bryan&rft.au=Mora%2C+David&rft.au=Ruiz-Baier%2C+Ricardo&rft.date=2019-05-05&rft_id=info:doi/10.48550%2Farxiv.1905.01779&rft.externalDocID=1905_01779 |