Discrete Modified Projection Method for Urysohn Integral Equations with Smooth Kernels

Approximate solutions of linear and nonlinear integral equations using methods related to an interpolatory projection involve many integrals which need to be evaluated using a numerical quadrature formula. In this paper, we consider discrete versions of the modified projection method and of the iter...

Full description

Saved in:
Bibliographic Details
Main Authors Kulkarni, Rekha P, Rakshit, Gobinda
Format Journal Article
LanguageEnglish
Published 02.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Approximate solutions of linear and nonlinear integral equations using methods related to an interpolatory projection involve many integrals which need to be evaluated using a numerical quadrature formula. In this paper, we consider discrete versions of the modified projection method and of the iterated modified projection methodfor solution of a Urysohn integral equation with a smooth kernel. For $r \geq 1,$ a space of piecewise polynomials of degree less than or equal to r - 1 with respect to an uniform partition is chosen to be the approximating space and the projection is chosen to be the interpolatory projection at r Gauss points. The orders of convergence which we obtain for these discrete versions indicate the choice of numerical quadrature which preserves the orders of convergence. Numerical results are given for a specific example.
AbstractList Approximate solutions of linear and nonlinear integral equations using methods related to an interpolatory projection involve many integrals which need to be evaluated using a numerical quadrature formula. In this paper, we consider discrete versions of the modified projection method and of the iterated modified projection methodfor solution of a Urysohn integral equation with a smooth kernel. For $r \geq 1,$ a space of piecewise polynomials of degree less than or equal to r - 1 with respect to an uniform partition is chosen to be the approximating space and the projection is chosen to be the interpolatory projection at r Gauss points. The orders of convergence which we obtain for these discrete versions indicate the choice of numerical quadrature which preserves the orders of convergence. Numerical results are given for a specific example.
Author Kulkarni, Rekha P
Rakshit, Gobinda
Author_xml – sequence: 1
  givenname: Rekha P
  surname: Kulkarni
  fullname: Kulkarni, Rekha P
– sequence: 2
  givenname: Gobinda
  surname: Rakshit
  fullname: Rakshit, Gobinda
BackLink https://doi.org/10.48550/arXiv.1708.00599$$DView paper in arXiv
BookMark eNotj7FOwzAUAD3AAIUPYMI_kGAneY49olKgohVIFNbIiZ-JUWqDHaD9e9rCdMvppDslRz54JOSCs7ySAOxKx437znnNZM4YKHVCXm9c6iKOSJfBOOvQ0KcY3rEbXfB0iWMfDLUh0pe4TaH3dO5HfIt6oLPPL72XEv1xY0-f1yHs8IDR45DOyLHVQ8Lzf07I6na2mt5ni8e7-fR6kWlRq0xwLJRGI4SuEaWS0CoD0ILiomMVFKaWlZVVAWh0C7o0vNspDDq0HEsoJ-TyL3sYaz6iW-u4bfaDzWGw_AVtX04_
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1708.00599
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1708_00599
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a679-61e29aed66a7ee8985b9d55b5916c0452d784f8425edab5a3d1c5b905cef1e353
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-61e29aed66a7ee8985b9d55b5916c0452d784f8425edab5a3d1c5b905cef1e353
OpenAccessLink https://arxiv.org/abs/1708.00599
ParticipantIDs arxiv_primary_1708_00599
PublicationCentury 2000
PublicationDate 2017-08-02
PublicationDateYYYYMMDD 2017-08-02
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-02
  day: 02
PublicationDecade 2010
PublicationYear 2017
Score 1.6718512
SecondaryResourceType preprint
Snippet Approximate solutions of linear and nonlinear integral equations using methods related to an interpolatory projection involve many integrals which need to be...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Numerical Analysis
Title Discrete Modified Projection Method for Urysohn Integral Equations with Smooth Kernels
URI https://arxiv.org/abs/1708.00599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELXaTiwIBKh8ygNrROPEjj0iaCmgAhIt6lb54ouoBElJC4J_z9kpgoXVPnl41uk923fPjJ0mlEUpJCLqJQhRakFHQKo0AoemKKAAHZyYRndqOElvpnLaYvynF8bWn_OPxh8YlmdxFkodpTFt1hbCl2xd3U-bx8lgxbWO_40jjRmG_pDEYIttrtUdP2-2Y5u1sNxhT5dzyk0Sp3xUuXlBmo8_NPcfhAkfhS-cOWlHPqm_ltVzya8bC4cX3n9rjLiX3F-X8sfXinDlt1iXxGi7bDzojy-G0fo7g8iqzNAZDYWx6JSyGaI2WoJxUoIkgZZ7Y3OX6bTwr2LoLEibuDinkJ7MsYgxkcke65RViV3GoYe0pJbCd61mOWjpVK4wzS2dbuJM7bNuAGG2aBwrZh6fWcDn4P-pQ7YhPGf5eghxxDqr-h2PiXFXcBJg_wZRkYIs
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Modified+Projection+Method+for+Urysohn+Integral+Equations+with+Smooth+Kernels&rft.au=Kulkarni%2C+Rekha+P&rft.au=Rakshit%2C+Gobinda&rft.date=2017-08-02&rft_id=info:doi/10.48550%2Farxiv.1708.00599&rft.externalDocID=1708_00599