Predictive feedback boundary control of semilinear and quasilinear 2x2 hyperbolic PDE-ODE systems

We present a control design for semilinear and quasilinear 2x2 hyperbolic partial differential equations with the control input at one boundary and a nonlinear ordinary differential equation coupled to the other. The controller can be designed to asymptotically stabilize the system at an equilibrium...

Full description

Saved in:
Bibliographic Details
Main Authors Strecker, Timm, Aamo, Ole Morten, Cantoni, Michael
Format Journal Article
LanguageEnglish
Published 19.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a control design for semilinear and quasilinear 2x2 hyperbolic partial differential equations with the control input at one boundary and a nonlinear ordinary differential equation coupled to the other. The controller can be designed to asymptotically stabilize the system at an equilibrium or relative to a reference signal. Two related but different controllers for semilinear and general quasilinear systems are presented and the additional challenges in quasilinear systems are discussed. Moreover, we present an observer that estimates the distributed PDE state and the unmeasured ODE state from measurements at the actuated boundary only, which can be used to also solve the output feedback control problem.
AbstractList We present a control design for semilinear and quasilinear 2x2 hyperbolic partial differential equations with the control input at one boundary and a nonlinear ordinary differential equation coupled to the other. The controller can be designed to asymptotically stabilize the system at an equilibrium or relative to a reference signal. Two related but different controllers for semilinear and general quasilinear systems are presented and the additional challenges in quasilinear systems are discussed. Moreover, we present an observer that estimates the distributed PDE state and the unmeasured ODE state from measurements at the actuated boundary only, which can be used to also solve the output feedback control problem.
Author Aamo, Ole Morten
Strecker, Timm
Cantoni, Michael
Author_xml – sequence: 1
  givenname: Timm
  surname: Strecker
  fullname: Strecker, Timm
– sequence: 2
  givenname: Ole Morten
  surname: Aamo
  fullname: Aamo, Ole Morten
– sequence: 3
  givenname: Michael
  surname: Cantoni
  fullname: Cantoni, Michael
BackLink https://doi.org/10.48550/arXiv.2105.09039$$DView paper in arXiv
BookMark eNo1z7tOwzAYhmEPMEDhApjwDSQ4PgR7RG04SJXaoXvkw29hkdjFTqvm7oEC06d3-aTnGl3EFAGhu4bUXApBHnQ-hWNNGyJqoghTV0hvM7hgp3AE7AGc0fYDm3SITucZ2xSnnAacPC4whiFE0Bnr6PDnQZf_pieK3-c9ZJOGYPF21VWbVYfLXCYYyw269HoocPu3C7R77nbL12q9eXlbPq0r3T6qSggvW6YZoZTzRkhuqAcuW04EWG89KOCWNk4q4i3RRIGU1jrD2pZrYgRboPvf27Ox3-cwfgv6H2t_trIvDghRcw
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2105.09039
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2105_09039
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a679-55f863a3022441584b2fe486405ecfcfe9e4c21d890fc0a09e88ccdb3664a0b53
IEDL.DBID GOX
IngestDate Mon Jan 08 05:39:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-55f863a3022441584b2fe486405ecfcfe9e4c21d890fc0a09e88ccdb3664a0b53
OpenAccessLink https://arxiv.org/abs/2105.09039
ParticipantIDs arxiv_primary_2105_09039
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationYear 2021
Score 1.8046012
SecondaryResourceType preprint
Snippet We present a control design for semilinear and quasilinear 2x2 hyperbolic partial differential equations with the control input at one boundary and a nonlinear...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Optimization and Control
Title Predictive feedback boundary control of semilinear and quasilinear 2x2 hyperbolic PDE-ODE systems
URI https://arxiv.org/abs/2105.09039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NTwMhECVtT16MRk39DAev6BZYFo7GtjYm2h5q0ttmYCE2xq3utqb-e4HdRi8egTnNBN4MM_MGoWs7YBlkzJBMQ0K4BxWieCGIowwyZ6RwsVH46VlMXvjjIl10EN71wkC1XX41_MC6vvXxSHoTfhJUF3UpDSVbD9NFk5yMVFyt_K-c9zHj1h-QGB-g_da7w3eNOQ5Rx5ZHCGZVyIaEdwU7DxYazBvWcZxR9Y3bWnG8cri278vg9UGFfXyPPzdQ79Z0S_GrDxkrHXh88Ww4ItPhCDc8zPUxmo9H8_sJaScbEBCZImnqpGDAAn56AJVcU2e5FN55ssYZZ5Xlhg4KqRJnEkiUldKYQjMhOCQ6ZSeoV65K20dY83BniwI0BCZ8AcrEMXtgOBQpzU5RP-oj_2jIK_Kgqjyq6uz_o3O0R0PtRmApVReot6429tKD71pfRQv8ALydhUM
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+feedback+boundary+control+of+semilinear+and+quasilinear+2x2+hyperbolic+PDE-ODE+systems&rft.au=Strecker%2C+Timm&rft.au=Aamo%2C+Ole+Morten&rft.au=Cantoni%2C+Michael&rft.date=2021-05-19&rft_id=info:doi/10.48550%2Farxiv.2105.09039&rft.externalDocID=2105_09039