Addressing Privacy Threats from Machine Learning

Every year at NeurIPS, machine learning researchers gather and discuss exciting applications of machine learning in areas such as public health, disaster response, climate change, education, and more. However, many of these same researchers are expressing growing concern about applications of machin...

Full description

Saved in:
Bibliographic Details
Main Author Smart, Mary Anne
Format Journal Article
LanguageEnglish
Published 24.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Every year at NeurIPS, machine learning researchers gather and discuss exciting applications of machine learning in areas such as public health, disaster response, climate change, education, and more. However, many of these same researchers are expressing growing concern about applications of machine learning for surveillance (Nanayakkara et al., 2021). This paper presents a brief overview of strategies for resisting these surveillance technologies and calls for greater collaboration between machine learning and human-computer interaction researchers to address the threats that these technologies pose.
AbstractList Every year at NeurIPS, machine learning researchers gather and discuss exciting applications of machine learning in areas such as public health, disaster response, climate change, education, and more. However, many of these same researchers are expressing growing concern about applications of machine learning for surveillance (Nanayakkara et al., 2021). This paper presents a brief overview of strategies for resisting these surveillance technologies and calls for greater collaboration between machine learning and human-computer interaction researchers to address the threats that these technologies pose.
Author Smart, Mary Anne
Author_xml – sequence: 1
  givenname: Mary Anne
  surname: Smart
  fullname: Smart, Mary Anne
BackLink https://doi.org/10.48550/arXiv.2111.04439$$DView paper in arXiv
BookMark eNotzs1uwjAQBGAf4MBPH4BT_QJJHe_aDkeE-icFwSH3aGtviiUwyKlQeftS2tMcZjT6pmKUTomFWFSqxNoY9UT5O15KXVVVqRBhORFqFULmYYjpU-5yvJC_ynafmb4G2efTUW7I72Ni2TDldFvNxbinw8AP_zkT7ctzu34rmu3r-3rVFGTdsgDPFkLQhLp2hkHVjATQgw1UO0C2lm69YceBHSnzEbxH1jp4MIgaZuLx7_ZO7s45Hilfu196d6fDD7P1P-4
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2111.04439
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2111_04439
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a679-3ce63dd2a42875e308e4a33f36da8734e66a3dd5e7ede7a05bdcc4e22dc354423
IEDL.DBID GOX
IngestDate Mon Jan 08 05:41:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-3ce63dd2a42875e308e4a33f36da8734e66a3dd5e7ede7a05bdcc4e22dc354423
OpenAccessLink https://arxiv.org/abs/2111.04439
ParticipantIDs arxiv_primary_2111_04439
PublicationCentury 2000
PublicationDate 2021-10-24
PublicationDateYYYYMMDD 2021-10-24
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-24
  day: 24
PublicationDecade 2020
PublicationYear 2021
Score 1.8204747
SecondaryResourceType preprint
Snippet Every year at NeurIPS, machine learning researchers gather and discuss exciting applications of machine learning in areas such as public health, disaster...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computers and Society
Computer Science - Cryptography and Security
Computer Science - Learning
Title Addressing Privacy Threats from Machine Learning
URI https://arxiv.org/abs/2111.04439
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8NADLbaTiwIBKg8dQNrINwryVghSoXEYwhStsqXc0qXCqWlgn-P7xIEC-vZi-8k-7P8-TuAyyDy5hyZBGtdJOFL4wRtyskQPYY5TY5NJMg-2dmrfqhMNQDxswuD7edy2-kDu_U1dyc3V6nmojmEoZSBsnX_XHXDySjF1fv_-jHGjEd_isR0D3Z7dCcm3XPsw4BWB5BOvI9s09VCvLTLLdZfonwLYG0twnaHeIyERhK91uniEMrpXXk7S_qPCjiurEhUTVZ5LzG0H4ZUmpNGpRplPeaZ0mQtst1QRp4yTI3zda1JSl8roxnPHMGIe30ag5Auk8QdltPGs6FxlhiB6cw5WWAj5TGMY3jz906LYh4in8fIT_43ncKODFQMTrlSn8Fo037QOdfSjbuIF_oNhWNzWQ
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+Privacy+Threats+from+Machine+Learning&rft.au=Smart%2C+Mary+Anne&rft.date=2021-10-24&rft_id=info:doi/10.48550%2Farxiv.2111.04439&rft.externalDocID=2111_04439