DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems

Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alt...

Full description

Saved in:
Bibliographic Details
Main Authors Wu, Qingyang, Gung, James, Shu, Raphael, Zhang, Yi
Format Journal Article
LanguageEnglish
Published 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.
AbstractList Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.
Author Zhang, Yi
Wu, Qingyang
Gung, James
Shu, Raphael
Author_xml – sequence: 1
  givenname: Qingyang
  surname: Wu
  fullname: Wu, Qingyang
– sequence: 2
  givenname: James
  surname: Gung
  fullname: Gung, James
– sequence: 3
  givenname: Raphael
  surname: Shu
  fullname: Shu, Raphael
– sequence: 4
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
BackLink https://doi.org/10.48550/arXiv.2308.00878$$DView paper in arXiv
BookMark eNpFz7FOwzAUhWEPMJTCAzDVL5Bgx4ljs1UpFKRIGcge3Tg3lYXrIMcgytNTAhLTWT4d6b8iF37ySMgtZ2muioLdQfi0H2kmmEoZU6VaEdxZMLFtdve0Rgje-gPdo8cAzn5B75DWENFHenZuOrwj3Zo403EKtJp8DJNzi2phfk2aYM8Uh3_8cpojHudrcjmCm_Hmb9ekfXxoq6ekbvbP1bZOQJYqQaGQY5ENGrkcQaOUSqIuBwFcc10KI3UuuTaYS5VlEnoj-owb1EwaLrlYk83v7dLZvQV7hHDqfnq7pVd8AypbUk8
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2308.00878
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2308_00878
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a678-e38e1e52d9e16fa9e6686e97d3a191973c694619ce468226abc3b21ce906c1613
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a678-e38e1e52d9e16fa9e6686e97d3a191973c694619ce468226abc3b21ce906c1613
OpenAccessLink https://arxiv.org/abs/2308.00878
ParticipantIDs arxiv_primary_2308_00878
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationYear 2023
Score 1.8894057
SecondaryResourceType preprint
Snippet Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computation and Language
Title DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems
URI https://arxiv.org/abs/2308.00878
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwFLTaTiwIBKh8ygOrRRInLzFb1VIqBHQJUrbIHy-oogqoDYifz4sTVBZW-6ZnS3fPPp8Zu6Z-2lU-5VMZFDFiKAxtHRHYRKYWHEh_NPD0DIuX-KFIigHjv29h9OZ79dXlA5vtDenj1uqYpdmQDaOotWzdL4vuctJHcfX4HY40ph_6QxLzA7bfqzs-6ZbjkA2wPmI4W2nb5MvZLe_TTF95n_bcWqrWyB9J8NUNJ5w_SeET22w5qUk-7Yzka4_K9fZNLNtcYlKJO3CfOX7M8vldPl2I_ncDoYkgBMoMQ0wipzCESisEyABV6qSmFkql0oKKqbuxGAOROGhjpYlCiyoASzJNnrBR_V7jmPGkim0VOgCiftJXsZYusGBISWgXVGl6ysa-JuVHF2BRtuUqfbnO_p86Z3vt1-qd2e2CjZrNJ14SATfmyq_CD-DQhZk
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DiactTOD%3A+Learning+Generalizable+Latent+Dialogue+Acts+for+Controllable+Task-Oriented+Dialogue+Systems&rft.au=Wu%2C+Qingyang&rft.au=Gung%2C+James&rft.au=Shu%2C+Raphael&rft.au=Zhang%2C+Yi&rft.date=2023-08-01&rft_id=info:doi/10.48550%2Farxiv.2308.00878&rft.externalDocID=2308_00878