A New Optimality Property of Strang's Splitting
For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is optimal...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
13.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in
many applications, we analyze splitting integrators based on the
(linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot
q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is
optimally stable in the sense that, when applied to a relevant model problem,
it has a larger stability region than alternative integrators. This generalizes
a well-known property of the common St\"{o}rmer/Verlet/leapfrog algorithm,
which of course arises from Strang splitting based on the (kinetic/potential)
split systems $\dot q = M^{-1} p$, $\dot p = 0$ and $\dot q = 0$, $\dot p =
-Aq+f(q)$. |
---|---|
AbstractList | For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in
many applications, we analyze splitting integrators based on the
(linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot
q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is
optimally stable in the sense that, when applied to a relevant model problem,
it has a larger stability region than alternative integrators. This generalizes
a well-known property of the common St\"{o}rmer/Verlet/leapfrog algorithm,
which of course arises from Strang splitting based on the (kinetic/potential)
split systems $\dot q = M^{-1} p$, $\dot p = 0$ and $\dot q = 0$, $\dot p =
-Aq+f(q)$. |
Author | Casas, Fernando Shaw, Luke Sanz-Serna, Jesús María |
Author_xml | – sequence: 1 givenname: Fernando surname: Casas fullname: Casas, Fernando – sequence: 2 givenname: Jesús María surname: Sanz-Serna fullname: Sanz-Serna, Jesús María – sequence: 3 givenname: Luke surname: Shaw fullname: Shaw, Luke |
BackLink | https://doi.org/10.48550/arXiv.2210.07048$$DView paper in arXiv |
BookMark | eNotzr1qwzAUBWANzdAmeYBO1dbJiWRJ1tUYTJoWQlKwd6NfY3BtI5s2efs6aad7uAcO3xN66PrOI_RMyYaDEGSr46X53qTp_CCScHhE2x0--R98HqbmS7fNdMWfsR98nEMfcDFF3dWvIy6GuZuarl6hRdDt6Nf_d4nKt32ZvyfH8-Ej3x0TnUlIbCqds0EyZ6k3meEOJOXCKAuKZw5ABu5DsIakUimVGRYIE0EA1RQIF2yJXv5m7-JqiLMuXqubvLrL2S82xT7l |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKY AKZ GOX |
DOI | 10.48550/arxiv.2210.07048 |
DatabaseName | arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2210_07048 |
GroupedDBID | AKY AKZ GOX |
ID | FETCH-LOGICAL-a678-c27ddcf73dc1eb6b4d87145b9c8946d887f4effcb0279996b3f035f581a180453 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:46:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a678-c27ddcf73dc1eb6b4d87145b9c8946d887f4effcb0279996b3f035f581a180453 |
OpenAccessLink | https://arxiv.org/abs/2210.07048 |
ParticipantIDs | arxiv_primary_2210_07048 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-13 |
PublicationDateYYYYMMDD | 2022-10-13 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationYear | 2022 |
Score | 1.8609483 |
SecondaryResourceType | preprint |
Snippet | For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in
many applications, we analyze splitting integrators based on the
(linear/nonlinear)... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Numerical Analysis Mathematics - Numerical Analysis |
Title | A New Optimality Property of Strang's Splitting |
URI | https://arxiv.org/abs/2210.07048 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ1LSwMxEMeHticvoqjUJzkInkJ389rdYxFrEbSCFfa25CkerLJtxY_vJLuiF29LNpdJMslvkn8mAJfIILbgPlCNsE1FqTNaGZ9T6aUSJSKGLeJt5PsHNX8Wd7WsB0B-7sLo9uv1s8sPbNYTxqLyqsBRNoQhY1Gydbuou8PJlIqrr_9bDxkzFf1ZJGZ7sNvTHZl23bEPA786gMmU4FRCFuicb4l6yWPcAW_x4z2QmB529XK1Jk-Ig0mEfAjL2c3yek77dwqoxqmeWlY4Z0PBnc29UUY4DEKENJUtK6EcenEQPgRrMAKM4YXhIeMyyDLXeYlExY9ghKG-HwNR6B3MGC-UtiLTTCNvIC9I7XVWOFkewzhZ13x0qSiaaHiTDD_5_9cp7LAo2o86DH4Go0279ee4lG7MRWrPbzGAchM |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Optimality+Property+of+Strang%27s+Splitting&rft.au=Casas%2C+Fernando&rft.au=Sanz-Serna%2C+Jes%C3%BAs+Mar%C3%ADa&rft.au=Shaw%2C+Luke&rft.date=2022-10-13&rft_id=info:doi/10.48550%2Farxiv.2210.07048&rft.externalDocID=2210_07048 |