A New Optimality Property of Strang's Splitting

For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is optimal...

Full description

Saved in:
Bibliographic Details
Main Authors Casas, Fernando, Sanz-Serna, Jesús María, Shaw, Luke
Format Journal Article
LanguageEnglish
Published 13.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is optimally stable in the sense that, when applied to a relevant model problem, it has a larger stability region than alternative integrators. This generalizes a well-known property of the common St\"{o}rmer/Verlet/leapfrog algorithm, which of course arises from Strang splitting based on the (kinetic/potential) split systems $\dot q = M^{-1} p$, $\dot p = 0$ and $\dot q = 0$, $\dot p = -Aq+f(q)$.
AbstractList For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear) split systems $\dot q = M^{-1} p$, $\dot p = -Aq$ and $\dot q = 0$, $\dot p = f(q)$. We show that the well-known Strang splitting is optimally stable in the sense that, when applied to a relevant model problem, it has a larger stability region than alternative integrators. This generalizes a well-known property of the common St\"{o}rmer/Verlet/leapfrog algorithm, which of course arises from Strang splitting based on the (kinetic/potential) split systems $\dot q = M^{-1} p$, $\dot p = 0$ and $\dot q = 0$, $\dot p = -Aq+f(q)$.
Author Casas, Fernando
Shaw, Luke
Sanz-Serna, Jesús María
Author_xml – sequence: 1
  givenname: Fernando
  surname: Casas
  fullname: Casas, Fernando
– sequence: 2
  givenname: Jesús María
  surname: Sanz-Serna
  fullname: Sanz-Serna, Jesús María
– sequence: 3
  givenname: Luke
  surname: Shaw
  fullname: Shaw, Luke
BackLink https://doi.org/10.48550/arXiv.2210.07048$$DView paper in arXiv
BookMark eNotzr1qwzAUBWANzdAmeYBO1dbJiWRJ1tUYTJoWQlKwd6NfY3BtI5s2efs6aad7uAcO3xN66PrOI_RMyYaDEGSr46X53qTp_CCScHhE2x0--R98HqbmS7fNdMWfsR98nEMfcDFF3dWvIy6GuZuarl6hRdDt6Nf_d4nKt32ZvyfH8-Ej3x0TnUlIbCqds0EyZ6k3meEOJOXCKAuKZw5ABu5DsIakUimVGRYIE0EA1RQIF2yJXv5m7-JqiLMuXqubvLrL2S82xT7l
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.2210.07048
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2210_07048
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a678-c27ddcf73dc1eb6b4d87145b9c8946d887f4effcb0279996b3f035f581a180453
IEDL.DBID GOX
IngestDate Mon Jan 08 05:46:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a678-c27ddcf73dc1eb6b4d87145b9c8946d887f4effcb0279996b3f035f581a180453
OpenAccessLink https://arxiv.org/abs/2210.07048
ParticipantIDs arxiv_primary_2210_07048
PublicationCentury 2000
PublicationDate 2022-10-13
PublicationDateYYYYMMDD 2022-10-13
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-13
  day: 13
PublicationDecade 2020
PublicationYear 2022
Score 1.8609483
SecondaryResourceType preprint
Snippet For systems of the form $\dot q = M^{-1} p$, $\dot p = -Aq+f(q)$, common in many applications, we analyze splitting integrators based on the (linear/nonlinear)...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Numerical Analysis
Mathematics - Numerical Analysis
Title A New Optimality Property of Strang's Splitting
URI https://arxiv.org/abs/2210.07048
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ1LSwMxEMeHticvoqjUJzkInkJ389rdYxFrEbSCFfa25CkerLJtxY_vJLuiF29LNpdJMslvkn8mAJfIILbgPlCNsE1FqTNaGZ9T6aUSJSKGLeJt5PsHNX8Wd7WsB0B-7sLo9uv1s8sPbNYTxqLyqsBRNoQhY1Gydbuou8PJlIqrr_9bDxkzFf1ZJGZ7sNvTHZl23bEPA786gMmU4FRCFuicb4l6yWPcAW_x4z2QmB529XK1Jk-Ig0mEfAjL2c3yek77dwqoxqmeWlY4Z0PBnc29UUY4DEKENJUtK6EcenEQPgRrMAKM4YXhIeMyyDLXeYlExY9ghKG-HwNR6B3MGC-UtiLTTCNvIC9I7XVWOFkewzhZ13x0qSiaaHiTDD_5_9cp7LAo2o86DH4Go0279ee4lG7MRWrPbzGAchM
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Optimality+Property+of+Strang%27s+Splitting&rft.au=Casas%2C+Fernando&rft.au=Sanz-Serna%2C+Jes%C3%BAs+Mar%C3%ADa&rft.au=Shaw%2C+Luke&rft.date=2022-10-13&rft_id=info:doi/10.48550%2Farxiv.2210.07048&rft.externalDocID=2210_07048