Explicit formula of boundary crossing probabilities for continuous local martingales to constant boundary
An explicit formula for the probability that a continuous local martingale crosses a one or two-sided random constant boundary in a finite time interval is derived. We obtain that the boundary crossing probability of a continuous local martingale to a constant boundary is equal to the boundary cross...
Saved in:
Main Author | |
---|---|
Format | Journal Article |
Language | English |
Published |
30.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An explicit formula for the probability that a continuous local martingale
crosses a one or two-sided random constant boundary in a finite time interval
is derived. We obtain that the boundary crossing probability of a continuous
local martingale to a constant boundary is equal to the boundary crossing
probability of a standard Wiener process to a constant boundary up to a time
change of quadratic variation value. This relies on the constancy of the
boundary and the Dambis, Dubins-Schwarz theorem for continuous local
martingale. The main idea of the proof is the scale invariant property of the
time-changed Wiener process and thus the scale invariant property of the
first-passage time. As an application, we also consider an inverse
first-passage time problem of quadratic variation. |
---|---|
AbstractList | An explicit formula for the probability that a continuous local martingale
crosses a one or two-sided random constant boundary in a finite time interval
is derived. We obtain that the boundary crossing probability of a continuous
local martingale to a constant boundary is equal to the boundary crossing
probability of a standard Wiener process to a constant boundary up to a time
change of quadratic variation value. This relies on the constancy of the
boundary and the Dambis, Dubins-Schwarz theorem for continuous local
martingale. The main idea of the proof is the scale invariant property of the
time-changed Wiener process and thus the scale invariant property of the
first-passage time. As an application, we also consider an inverse
first-passage time problem of quadratic variation. |
Author | Potiron, Yoann |
Author_xml | – sequence: 1 givenname: Yoann surname: Potiron fullname: Potiron, Yoann |
BackLink | https://doi.org/10.48550/arXiv.2312.00287$$DView paper in arXiv |
BookMark | eNo9j71uwyAUhRnaoU37AJ3KC9gFbIwZqyj9kSJ1yW5dMERIBCzAVfL2tdOq05XO_XR0vnt0E2IwCD1RUrc95-QF0tl916yhrCaE9eIOud158k67gm1Mp9kDjharOIcR0gXrFHN24YinFBUo511xJq8o1jEUF-Y4Z-yjBo9PkJbgCH4BSlz_uUAo_2UP6NaCz-bx727Q4W132H5U-6_3z-3rvoJOiEqC1EopyxvCqTUja4mxlPQcRtNSa4XuTcullKPsJGEGaEcEsBWXhgNrNuj5t_bqOkzJLcMuw-o8XJ2bH4m9VmA |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2312.00287 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2312_00287 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a677-9a9cbbbf53051fed240ef1085ade41ff7c8e45999d96902ea1607a253059e5a23 |
IEDL.DBID | GOX |
IngestDate | Tue Mar 05 12:23:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a677-9a9cbbbf53051fed240ef1085ade41ff7c8e45999d96902ea1607a253059e5a23 |
OpenAccessLink | https://arxiv.org/abs/2312.00287 |
ParticipantIDs | arxiv_primary_2312_00287 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-30 |
PublicationDateYYYYMMDD | 2023-11-30 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-30 day: 30 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.9024363 |
SecondaryResourceType | preprint |
Snippet | An explicit formula for the probability that a continuous local martingale
crosses a one or two-sided random constant boundary in a finite time interval
is... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Probability |
Title | Explicit formula of boundary crossing probabilities for continuous local martingales to constant boundary |
URI | https://arxiv.org/abs/2312.00287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryIolI_2YPXYLP52OYoYi2CeqmQW5hNZiGgqaSJ6L93ZlM_Ll53hxxm2bz32Jk3AJcpQ1ysyQRkULNAiasgi6owsG6Wlaa0lSHpd354TJfP8X2e5CNQ370w2H7U74M_sN1cMfnQvtTRjGGstZRs3T3lw-Okt-Laxv_GMcf0S39AYrEHu1t2p66H49iHETUHUEudW13WnRKC2L-gWjtl_Tij9lN5mGL8UDLaZTDNZvEqoUrKyOumZ22uPOSoV9_zL__0jerWsi_crvv52CGsFrerm2WwnXAQYCpPp5iV1lqX8KULHVWMruSkHQArikPnTDmnOGEKV2UsYjWhuMGhlvCMEtTREUyadUNTUKW285C0Y_5gY9QznGsTIlHK8jfDMDqGqc9L8TaYWBSSssKn7OT_rVPYkfHqg9XhGUy6tqdzBuHOXviT-AIJNoot |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+formula+of+boundary+crossing+probabilities+for+continuous+local+martingales+to+constant+boundary&rft.au=Potiron%2C+Yoann&rft.date=2023-11-30&rft_id=info:doi/10.48550%2Farxiv.2312.00287&rft.externalDocID=2312_00287 |