Explicit formula of boundary crossing probabilities for continuous local martingales to constant boundary

An explicit formula for the probability that a continuous local martingale crosses a one or two-sided random constant boundary in a finite time interval is derived. We obtain that the boundary crossing probability of a continuous local martingale to a constant boundary is equal to the boundary cross...

Full description

Saved in:
Bibliographic Details
Main Author Potiron, Yoann
Format Journal Article
LanguageEnglish
Published 30.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An explicit formula for the probability that a continuous local martingale crosses a one or two-sided random constant boundary in a finite time interval is derived. We obtain that the boundary crossing probability of a continuous local martingale to a constant boundary is equal to the boundary crossing probability of a standard Wiener process to a constant boundary up to a time change of quadratic variation value. This relies on the constancy of the boundary and the Dambis, Dubins-Schwarz theorem for continuous local martingale. The main idea of the proof is the scale invariant property of the time-changed Wiener process and thus the scale invariant property of the first-passage time. As an application, we also consider an inverse first-passage time problem of quadratic variation.
AbstractList An explicit formula for the probability that a continuous local martingale crosses a one or two-sided random constant boundary in a finite time interval is derived. We obtain that the boundary crossing probability of a continuous local martingale to a constant boundary is equal to the boundary crossing probability of a standard Wiener process to a constant boundary up to a time change of quadratic variation value. This relies on the constancy of the boundary and the Dambis, Dubins-Schwarz theorem for continuous local martingale. The main idea of the proof is the scale invariant property of the time-changed Wiener process and thus the scale invariant property of the first-passage time. As an application, we also consider an inverse first-passage time problem of quadratic variation.
Author Potiron, Yoann
Author_xml – sequence: 1
  givenname: Yoann
  surname: Potiron
  fullname: Potiron, Yoann
BackLink https://doi.org/10.48550/arXiv.2312.00287$$DView paper in arXiv
BookMark eNo9j71uwyAUhRnaoU37AJ3KC9gFbIwZqyj9kSJ1yW5dMERIBCzAVfL2tdOq05XO_XR0vnt0E2IwCD1RUrc95-QF0tl916yhrCaE9eIOud158k67gm1Mp9kDjharOIcR0gXrFHN24YinFBUo511xJq8o1jEUF-Y4Z-yjBo9PkJbgCH4BSlz_uUAo_2UP6NaCz-bx727Q4W132H5U-6_3z-3rvoJOiEqC1EopyxvCqTUja4mxlPQcRtNSa4XuTcullKPsJGEGaEcEsBWXhgNrNuj5t_bqOkzJLcMuw-o8XJ2bH4m9VmA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2312.00287
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2312_00287
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a677-9a9cbbbf53051fed240ef1085ade41ff7c8e45999d96902ea1607a253059e5a23
IEDL.DBID GOX
IngestDate Tue Mar 05 12:23:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a677-9a9cbbbf53051fed240ef1085ade41ff7c8e45999d96902ea1607a253059e5a23
OpenAccessLink https://arxiv.org/abs/2312.00287
ParticipantIDs arxiv_primary_2312_00287
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationYear 2023
Score 1.9024363
SecondaryResourceType preprint
Snippet An explicit formula for the probability that a continuous local martingale crosses a one or two-sided random constant boundary in a finite time interval is...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Probability
Title Explicit formula of boundary crossing probabilities for continuous local martingales to constant boundary
URI https://arxiv.org/abs/2312.00287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8NAEB3anryIolI_2YPXYLP52OYoYi2CeqmQW5hNZiGgqaSJ6L93ZlM_Ll53hxxm2bz32Jk3AJcpQ1ysyQRkULNAiasgi6owsG6Wlaa0lSHpd354TJfP8X2e5CNQ370w2H7U74M_sN1cMfnQvtTRjGGstZRs3T3lw-Okt-Laxv_GMcf0S39AYrEHu1t2p66H49iHETUHUEudW13WnRKC2L-gWjtl_Tij9lN5mGL8UDLaZTDNZvEqoUrKyOumZ22uPOSoV9_zL__0jerWsi_crvv52CGsFrerm2WwnXAQYCpPp5iV1lqX8KULHVWMruSkHQArikPnTDmnOGEKV2UsYjWhuMGhlvCMEtTREUyadUNTUKW285C0Y_5gY9QznGsTIlHK8jfDMDqGqc9L8TaYWBSSssKn7OT_rVPYkfHqg9XhGUy6tqdzBuHOXviT-AIJNoot
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+formula+of+boundary+crossing+probabilities+for+continuous+local+martingales+to+constant+boundary&rft.au=Potiron%2C+Yoann&rft.date=2023-11-30&rft_id=info:doi/10.48550%2Farxiv.2312.00287&rft.externalDocID=2312_00287