Predicting and Attending to Damaging Collisions for Placing Everyday Objects in Photo-Realistic Simulations

Placing objects is a fundamental task for domestic service robots (DSRs). Thus, inferring the collision-risk before a placing motion is crucial for achieving the requested task. This problem is particularly challenging because it is necessary to predict what happens if an object is placed in a clutt...

Full description

Saved in:
Bibliographic Details
Main Authors Magassouba, Aly, Sugiura, Komei, Nakayama, Angelica, Hirakawa, Tsubasa, Yamashita, Takayoshi, Fujiyoshi, Hironobu, Kawai, Hisashi
Format Journal Article
LanguageEnglish
Published 12.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Placing objects is a fundamental task for domestic service robots (DSRs). Thus, inferring the collision-risk before a placing motion is crucial for achieving the requested task. This problem is particularly challenging because it is necessary to predict what happens if an object is placed in a cluttered designated area. We show that a rule-based approach that uses plane detection, to detect free areas, performs poorly. To address this, we develop PonNet, which has multimodal attention branches and a self-attention mechanism to predict damaging collisions, based on RGBD images. Our method can visualize the risk of damaging collisions, which is convenient because it enables the user to understand the risk. For this purpose, we build and publish an original dataset that contains 12,000 photo-realistic images of specific placing areas, with daily life objects, in home environments. The experimental results show that our approach improves accuracy compared with the baseline methods.
AbstractList Placing objects is a fundamental task for domestic service robots (DSRs). Thus, inferring the collision-risk before a placing motion is crucial for achieving the requested task. This problem is particularly challenging because it is necessary to predict what happens if an object is placed in a cluttered designated area. We show that a rule-based approach that uses plane detection, to detect free areas, performs poorly. To address this, we develop PonNet, which has multimodal attention branches and a self-attention mechanism to predict damaging collisions, based on RGBD images. Our method can visualize the risk of damaging collisions, which is convenient because it enables the user to understand the risk. For this purpose, we build and publish an original dataset that contains 12,000 photo-realistic images of specific placing areas, with daily life objects, in home environments. The experimental results show that our approach improves accuracy compared with the baseline methods.
Author Hirakawa, Tsubasa
Nakayama, Angelica
Magassouba, Aly
Sugiura, Komei
Kawai, Hisashi
Yamashita, Takayoshi
Fujiyoshi, Hironobu
Author_xml – sequence: 1
  givenname: Aly
  surname: Magassouba
  fullname: Magassouba, Aly
– sequence: 2
  givenname: Komei
  surname: Sugiura
  fullname: Sugiura, Komei
– sequence: 3
  givenname: Angelica
  surname: Nakayama
  fullname: Nakayama, Angelica
– sequence: 4
  givenname: Tsubasa
  surname: Hirakawa
  fullname: Hirakawa, Tsubasa
– sequence: 5
  givenname: Takayoshi
  surname: Yamashita
  fullname: Yamashita, Takayoshi
– sequence: 6
  givenname: Hironobu
  surname: Fujiyoshi
  fullname: Fujiyoshi, Hironobu
– sequence: 7
  givenname: Hisashi
  surname: Kawai
  fullname: Kawai, Hisashi
BackLink https://doi.org/10.48550/arXiv.2102.06507$$DView paper in arXiv
BookMark eNotj0lOwzAYhb2ABRQOwApfIMGO48ReVqEMUqVG0H30x0MxJDZyTEVuDyms3iC9J32X6MwHbxC6oSQvBefkDuK3O-YFJUVOKk7qC_TRRqOdSs4fMHiN1ykZr5eUAr6HEQ6Lb8IwuMkFP2EbIm4HUEu9OZo4a5jxrn83Kk3Yedy-hRSyFwO_g-QUfnXj1wBp2V6hcwvDZK7_dYX2D5t985Rtd4_PzXqbQVXXmWQMoKCCcMu4kVrbnhd1LagVUErQUnNluZDCEkorUlrRU1oSynShjZCUrdDt3-2JtvuMboQ4dwt1d6JmP9sYVPM
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2102.06507
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2102_06507
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a677-933aa21805f35e9ddfb527781f8a49ad9d5cf5898f011604f8b114013d2de8913
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a677-933aa21805f35e9ddfb527781f8a49ad9d5cf5898f011604f8b114013d2de8913
OpenAccessLink https://arxiv.org/abs/2102.06507
ParticipantIDs arxiv_primary_2102_06507
PublicationCentury 2000
PublicationDate 2021-02-12
PublicationDateYYYYMMDD 2021-02-12
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-12
  day: 12
PublicationDecade 2020
PublicationYear 2021
Score 1.795925
SecondaryResourceType preprint
Snippet Placing objects is a fundamental task for domestic service robots (DSRs). Thus, inferring the collision-risk before a placing motion is crucial for achieving...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computer Vision and Pattern Recognition
Computer Science - Robotics
Title Predicting and Attending to Damaging Collisions for Placing Everyday Objects in Photo-Realistic Simulations
URI https://arxiv.org/abs/2102.06507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5tT15EUalPcvC6upvHbnIs2loEbdEKvZVkk2DR7pbuKvbfm8mu6MVjkoHAJGFm8s18g9BlrJJUCsDUXRZHzKQkUsw_d5lQzmgqrRZQ7_zwmI5f2P2czzsI_9TCqM3X8rPhB9bVNcQjV-BEZF3UJQRStu4m8wacDFRcrfyvnPcxw9QfIzHaQ7utd4cHzXHso44tDtDbdANoCOQXYx-340EN_84wqkt8q1ahTxCGCD7UeVfY-5F4-q5ymB76q7Y1aosnGn5MKrws8PS1rMvoyQJ3od8IPy9XbROu6hDNRsPZzThqexxEKgXwlFKlvJWNuaPcSmOc5iTLROKEYlIZaXjuuJDCAWASMyd0EkIiQ4wFhPEI9YqysH2ElSQuy3Jv9KhiXOfCEBdTbRMCtFpEH6N-0Mxi3dBYLEBpi6C0k_-XTtEOgSyO0ALlDPXqzYc992a41hfhLL4BOAiIFg
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+and+Attending+to+Damaging+Collisions+for+Placing+Everyday+Objects+in+Photo-Realistic+Simulations&rft.au=Magassouba%2C+Aly&rft.au=Sugiura%2C+Komei&rft.au=Nakayama%2C+Angelica&rft.au=Hirakawa%2C+Tsubasa&rft.date=2021-02-12&rft_id=info:doi/10.48550%2Farxiv.2102.06507&rft.externalDocID=2102_06507