Heterogeneous gain distributions in neural networks I:The stationary case

We study heterogeneous distribution of gains in neural fields using techniques of quantum mechanics by exploiting a relationship of our model and the time-independent Schr\"{o}dinger equation. We show that specific relationships between the connectivity kernel and the gain of the population can...

Full description

Saved in:
Bibliographic Details
Main Authors Rodriguez, Alejandro Jimenez, Ceballos, Juan Carlos Cordero, Sanchez, Nestor E
Format Journal Article
LanguageEnglish
Published 02.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study heterogeneous distribution of gains in neural fields using techniques of quantum mechanics by exploiting a relationship of our model and the time-independent Schr\"{o}dinger equation. We show that specific relationships between the connectivity kernel and the gain of the population can explain the behavior of the neural field in simulations. In particular, we show this relationships for the gating of activity between two regions (step potential), the propagation of activity throughout another region (barrier) and, most importantly, the existence of bumps in gain-contained regions (gain well). Our results constitute specific predictions that can be tested in vivo or in vitro.
AbstractList We study heterogeneous distribution of gains in neural fields using techniques of quantum mechanics by exploiting a relationship of our model and the time-independent Schr\"{o}dinger equation. We show that specific relationships between the connectivity kernel and the gain of the population can explain the behavior of the neural field in simulations. In particular, we show this relationships for the gating of activity between two regions (step potential), the propagation of activity throughout another region (barrier) and, most importantly, the existence of bumps in gain-contained regions (gain well). Our results constitute specific predictions that can be tested in vivo or in vitro.
Author Rodriguez, Alejandro Jimenez
Ceballos, Juan Carlos Cordero
Sanchez, Nestor E
Author_xml – sequence: 1
  givenname: Alejandro Jimenez
  surname: Rodriguez
  fullname: Rodriguez, Alejandro Jimenez
– sequence: 2
  givenname: Juan Carlos Cordero
  surname: Ceballos
  fullname: Ceballos, Juan Carlos Cordero
– sequence: 3
  givenname: Nestor E
  surname: Sanchez
  fullname: Sanchez, Nestor E
BackLink https://doi.org/10.48550/arXiv.1702.00687$$DView paper in arXiv
BookMark eNotj8tOwzAURL2ABRQ-gBX-gQQ_4jhmhyqgkSqxyT66da6LRbGR7fD4e9LC6kij0WjOJTkLMSAhN5zVTacUu4P07T9rrpmoGWs7fUH6DRZMcY8B45zpHnygk88l-d1cfAyZLkHAOcFhQfmK6S3T_n54RZoLHBuQfqiFjFfk3MEh4_U_V2R4ehzWm2r78tyvH7YVtFpXzc5KsE4L0QiFiAa4NhyVBGmatp3aqeksdhwkOmMcg04I5hRHZoVjysoVuf2bPbmMH8m_Lw_Go9N4cpK_QFpJuQ
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID ALC
GOX
DOI 10.48550/arxiv.1702.00687
DatabaseName arXiv Quantitative Biology
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1702_00687
GroupedDBID ALC
GOX
ID FETCH-LOGICAL-a677-4bc3acf722425eee9a1791e53a39466d6d48ce81a3ef99f0a8220f51e0c2f05c3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:48:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a677-4bc3acf722425eee9a1791e53a39466d6d48ce81a3ef99f0a8220f51e0c2f05c3
OpenAccessLink https://arxiv.org/abs/1702.00687
ParticipantIDs arxiv_primary_1702_00687
PublicationCentury 2000
PublicationDate 2017-02-02
PublicationDateYYYYMMDD 2017-02-02
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-02
  day: 02
PublicationDecade 2010
PublicationYear 2017
Score 1.6568754
SecondaryResourceType preprint
Snippet We study heterogeneous distribution of gains in neural fields using techniques of quantum mechanics by exploiting a relationship of our model and the...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Quantitative Biology - Neurons and Cognition
Title Heterogeneous gain distributions in neural networks I:The stationary case
URI https://arxiv.org/abs/1702.00687
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07TwMxDLbaTiwIBKg8lYH1xF1yeRwbQpQWCViK1K3KJT7EckW9gsq_x747BAtLBscZYg-fHTufAS45JUCF_HJPSx6jTrx2WVJm6ArtbPAp_0Z-fDLTl_xhoRcDED9_Yfx6-_bZ8QOXzVVmWz5N4-wQhlJyy9b986IrTrZUXL3-rx7FmK3oD0hM9mC3j-7ETeeOfRhgfQCzKbecrMhTSGm2eKVcXETmq-1HTTWCBMwrSSfrriu7EbNrcqBoukK5X3-JQHBzCPPJ3fx2mvQTDBJvrE3yMigfKis5rkfEwjMZKGrlFdO6RxNzF9BlXmFVFFXqCa3TSmeYBlmlOqgjGNWrGscgkDI1mYZQZCHmqjSkrp03pvCmiqWVxzBu771870gqlmySZWuSk_-3TmFHMkxxF7I8g9Fm_YHnBLKb8qK19Dda7316
link.rule.ids 228,230,780,885
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+gain+distributions+in+neural+networks+I%3AThe+stationary+case&rft.au=Rodriguez%2C+Alejandro+Jimenez&rft.au=Ceballos%2C+Juan+Carlos+Cordero&rft.au=Sanchez%2C+Nestor+E&rft.date=2017-02-02&rft_id=info:doi/10.48550%2Farxiv.1702.00687&rft.externalDocID=1702_00687