Towards Modular LLMs by Building and Reusing a Library of LoRAs

The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-sh...

Full description

Saved in:
Bibliographic Details
Main Authors Ostapenko, Oleksiy, Su, Zhan, Ponti, Edoardo Maria, Charlin, Laurent, Roux, Nicolas Le, Pereira, Matheus, Caccia, Lucas, Sordoni, Alessandro
Format Journal Article
LanguageEnglish
Published 17.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
DOI:10.48550/arxiv.2405.11157