Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, w...

Full description

Saved in:
Bibliographic Details
Main Authors Ashraphijuo, Morteza, Wang, Xiaodong
Format Journal Article
LanguageEnglish
Published 25.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model.
AbstractList Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model.
Author Wang, Xiaodong
Ashraphijuo, Morteza
Author_xml – sequence: 1
  givenname: Morteza
  surname: Ashraphijuo
  fullname: Ashraphijuo, Morteza
– sequence: 2
  givenname: Xiaodong
  surname: Wang
  fullname: Wang, Xiaodong
BackLink https://doi.org/10.48550/arXiv.1707.07976$$DView paper in arXiv
BookMark eNotz81KxDAUBeAsdKGjD-DKvEBr0qa56Uqk-Ad1BO2-3CY3EGyTIeP_0-uMrg6HAwe-Y3YQUyTGzqQolWkacYH5M7yXEgSUAlrQR-zy2eJMjq_f7EyY-TrlhT-EGJbwja8hRe5T5n36KJ4wvvCB4va3d2nZzLSbT9ihx3lLp_-5YsPN9dDdFf3j7X131ReoQRcOqJ2srpzUqq4ab6SY9CRIgfQVKucMWSusBzCGQDvZWieF1ASTEqrBesXO_273gnGTw4L5a9xJxr2k_gE-GEUg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.1707.07976
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1707_07976
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a676-d7e9bc62d164325f810b6b0e471f2a4dd8ecc0cf7788e76d19cd1016e7b4045a3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a676-d7e9bc62d164325f810b6b0e471f2a4dd8ecc0cf7788e76d19cd1016e7b4045a3
OpenAccessLink https://arxiv.org/abs/1707.07976
ParticipantIDs arxiv_primary_1707_07976
PublicationCentury 2000
PublicationDate 2017-07-25
PublicationDateYYYYMMDD 2017-07-25
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-25
  day: 25
PublicationDecade 2010
PublicationYear 2017
Score 1.6712676
SecondaryResourceType preprint
Snippet Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Numerical Analysis
Statistics - Machine Learning
Title Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion
URI https://arxiv.org/abs/1707.07976
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwGP3YdvIiisr8SQ5eg03aJu1RxDnETZAKvZX8hCJ2Muf0z_dLWtGLxyTfJS-E9x5JXgAuUfH7LC0E1Uxqmunc0IKZnJZS55Z5x3nMKVgsxfw5u6_zegTk5y2MWn-12z4fWL9fMRkSBiVS5hjGnIcrW3ePdX84GaO4hvrfOtSYsesPScz2YHdQd-S6X459GLnuAPUw4uAsWYboYLUm4R97smi79nV4A0lQOJKH1Sd9Ut0LqdBYYjts1BCMveoOoZrdVjdzOvxbQJWQglrpSm0Et-hEUp77giVa6MQhDXiuMmsLhC0xXqL7dFJYVhobPLSTOkOBpdIjmKD1d1Mg2EDXGK6uJGmmhNdGCZta4xTyqnT-GKZxts1bH03RBCCaCMTJ_0OnsMMDOSUho-EMJpv1hztHat3oi4jvN3sHeOw
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaled+Nuclear+Norm+Minimization+for+Low-Rank+Tensor+Completion&rft.au=Ashraphijuo%2C+Morteza&rft.au=Wang%2C+Xiaodong&rft.date=2017-07-25&rft_id=info:doi/10.48550%2Farxiv.1707.07976&rft.externalDocID=1707_07976