Closed periodic orbits in anomalous gravitation

Newton famously showed that a gravitational force inversely proportional to the square of the distance, $F \sim 1/r^2$, formally explains Kepler's three laws of planetary motion. But what happens to the familiar elliptical orbits if the force were to taper off with a different spatial exponent?...

Full description

Saved in:
Bibliographic Details
Main Author Vermeersch, Bjorn A
Format Journal Article
LanguageEnglish
Published 02.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Newton famously showed that a gravitational force inversely proportional to the square of the distance, $F \sim 1/r^2$, formally explains Kepler's three laws of planetary motion. But what happens to the familiar elliptical orbits if the force were to taper off with a different spatial exponent? Here we expand generic textbook treatments by a detailed geometric characterisation of the general solution to the equation of motion for a two-body `sun/planet' system under anomalous gravitation $F \sim 1/r^{\alpha} (1 \leq \alpha < 2)$. A subset of initial conditions induce closed self-intersecting periodic orbits resembling hypotrochoids with perihelia and aphelia forming regular polygons. We provide time-resolved trajectories for a variety of exponents $\alpha$, and discuss conceptual connections of the case $\alpha = 1$ to Modified Newtonian Dynamics and galactic rotation curves.
AbstractList Newton famously showed that a gravitational force inversely proportional to the square of the distance, $F \sim 1/r^2$, formally explains Kepler's three laws of planetary motion. But what happens to the familiar elliptical orbits if the force were to taper off with a different spatial exponent? Here we expand generic textbook treatments by a detailed geometric characterisation of the general solution to the equation of motion for a two-body `sun/planet' system under anomalous gravitation $F \sim 1/r^{\alpha} (1 \leq \alpha < 2)$. A subset of initial conditions induce closed self-intersecting periodic orbits resembling hypotrochoids with perihelia and aphelia forming regular polygons. We provide time-resolved trajectories for a variety of exponents $\alpha$, and discuss conceptual connections of the case $\alpha = 1$ to Modified Newtonian Dynamics and galactic rotation curves.
Author Vermeersch, Bjorn A
Author_xml – sequence: 1
  givenname: Bjorn A
  surname: Vermeersch
  fullname: Vermeersch, Bjorn A
BackLink https://doi.org/10.48550/arXiv.1804.00606$$DView paper in arXiv
BookMark eNotzr1ugzAUhmEPyZAmuYBM9Q1AjrF9cMYK9U9CypIdHcCOLBEbGYrau2-bdvqkd_j0PLBViMEydhCQK6M1HCl9-iUXBlQOgIAbdqyGONmejzb52PuOx9T6eeI-cArxRkP8mPg10eJnmn0MO7Z2NEx2_79bdnl5vlRvWX1-fa-e6oywxKzThhwJKQhOunOd0wWQK1WLRpUSnBVWgLKFFq35KRql7EvsC0RyorBGbtnj3-1d3IzJ3yh9Nb_y5i6X34yQPzA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID GOX
DOI 10.48550/arxiv.1804.00606
DatabaseName arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1804_00606
GroupedDBID GOX
ID FETCH-LOGICAL-a676-c58afa131a095cfcf520af74b684730fe1e104e251b88475633d76d266af12e83
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a676-c58afa131a095cfcf520af74b684730fe1e104e251b88475633d76d266af12e83
OpenAccessLink https://arxiv.org/abs/1804.00606
ParticipantIDs arxiv_primary_1804_00606
PublicationCentury 2000
PublicationDate 2018-04-02
PublicationDateYYYYMMDD 2018-04-02
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-02
  day: 02
PublicationDecade 2010
PublicationYear 2018
Score 1.693035
SecondaryResourceType preprint
Snippet Newton famously showed that a gravitational force inversely proportional to the square of the distance, $F \sim 1/r^2$, formally explains Kepler's three laws...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Physics - Popular Physics
Title Closed periodic orbits in anomalous gravitation
URI https://arxiv.org/abs/1804.00606
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8QwEA3rnryIorJ-koPXsE3SJulRFtdFUC8r9FbyCYW1lbaKP3-naUUvXidzmQTy3iOTNwjdORksk3kgzlpD0twFYpxlJHEs5E5Jac3wd_j5RWze0qciK2YI__yF0e139TX6A5tuSVU0txaDp_YBY0PL1uNrMT5ORiuuKf83DzhmDP0BifUxOprYHb4fj-MEzXx9iparXdN5hwdP4cZVFjetqfoOVzXWdfOudyC-8TAGaLLLPkPb9cN2tSHTnAKihRTEZkoHTTnVQFdssCFjiQ4yNQJufp4ETz1oHg9EwiiIZIJzJ4UDZNSBMq_4OZqD1PcLhIEraNBAoIs4MAVA7yQwxzOb5EwoJ-gFWsTqyo_RiqIcCi9j4Zf_L12hQ4B5FftN2DWa9-2nvwEo7c1t3M89AatzDA
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed+periodic+orbits+in+anomalous+gravitation&rft.au=Vermeersch%2C+Bjorn+A&rft.date=2018-04-02&rft_id=info:doi/10.48550%2Farxiv.1804.00606&rft.externalDocID=1804_00606