Improved Financial Forecasting via Quantum Machine Learning

Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest...

Full description

Saved in:
Bibliographic Details
Main Authors Thakkar, Sohum, Kazdaghli, Skander, Mathur, Natansh, Kerenidis, Iordanis, Ferreira-Martins, André J, Brito, Samurai
Format Journal Article
LanguageEnglish
Published 31.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest models for churn prediction, improving precision by almost 6%. Second, we design quantum neural network architectures with orthogonal and compound layers for credit risk assessment, which match classical performance with significantly fewer parameters. Our results demonstrate that leveraging quantum ideas can effectively enhance the performance of machine learning, both today as quantum-inspired classical ML solutions, and even more in the future, with the advent of better quantum hardware.
AbstractList Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest models for churn prediction, improving precision by almost 6%. Second, we design quantum neural network architectures with orthogonal and compound layers for credit risk assessment, which match classical performance with significantly fewer parameters. Our results demonstrate that leveraging quantum ideas can effectively enhance the performance of machine learning, both today as quantum-inspired classical ML solutions, and even more in the future, with the advent of better quantum hardware.
Author Kazdaghli, Skander
Thakkar, Sohum
Mathur, Natansh
Brito, Samurai
Ferreira-Martins, André J
Kerenidis, Iordanis
Author_xml – sequence: 1
  givenname: Sohum
  surname: Thakkar
  fullname: Thakkar, Sohum
  organization: QC Ware Corp
– sequence: 2
  givenname: Skander
  surname: Kazdaghli
  fullname: Kazdaghli, Skander
  organization: QC Ware Corp
– sequence: 3
  givenname: Natansh
  surname: Mathur
  fullname: Mathur, Natansh
  organization: IRIF - Université Paris Cité and CNRS
– sequence: 4
  givenname: Iordanis
  surname: Kerenidis
  fullname: Kerenidis, Iordanis
  organization: IRIF - Université Paris Cité and CNRS
– sequence: 5
  givenname: André J
  surname: Ferreira-Martins
  fullname: Ferreira-Martins, André J
  organization: Itaú Unibanco
– sequence: 6
  givenname: Samurai
  surname: Brito
  fullname: Brito, Samurai
  organization: Itaú Unibanco
BackLink https://doi.org/10.48550/arXiv.2306.12965$$DView paper in arXiv
BookMark eNotj81qwkAUhWdhF9X6AK46L5B0JvOTGVyJNK2QIoL7cJ3c6EAyCaOG9u1rtatz4MDH-aZkEvqAhCw4S6VRir1B_PZjmgmmU55ZrZ7JctMNsR-xpoUPEJyHlhZ9RAfniw9HOnqguyuEy7WjX-BOPiAtEWK4jS_kqYH2jPP_nJF98b5ffybl9mOzXpUJ6FwlaJw1XGuGmWWqkRIt3joKqQ0ewAJXtRGuFtJILkBw6zKDTsuDZYbxXMzI6wN7f18N0XcQf6o_i-puIX4B5NpC5Q
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2306.12965
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2306_12965
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a675-e8c981660e2905f44e9e0e2e3468eba9a15d83cd348413a319c28ec64b9080173
IEDL.DBID GOX
IngestDate Sat Apr 06 12:19:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-e8c981660e2905f44e9e0e2e3468eba9a15d83cd348413a319c28ec64b9080173
OpenAccessLink https://arxiv.org/abs/2306.12965
ParticipantIDs arxiv_primary_2306_12965
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationYear 2023
Score 1.8852081
SecondaryResourceType preprint
Snippet Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Physics - Quantum Physics
Quantitative Finance - Statistical Finance
Title Improved Financial Forecasting via Quantum Machine Learning
URI https://arxiv.org/abs/2306.12965
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB7anryIolKf5OA1uo8km-BJxFqEKkKFvS15TKQHRdpu8ec3yW7Ri7eQzGUmIfOFmXwfwLXz3jilHTUYrkDmREZVZRj1ylWSIxZlUmuYvYjpO3uueT0AsvsLo5c_i03HD2xWtxEf34SMJPgQhkURW7aeXuuuOJmouHr7X7uAMdPUnyQxOYD9Ht2R-247DmGAX0dw1z3c0ZHJjt6CREVMq1ex55hsFpq8tcHD9pPMUm8jkp729OMY5pPH-cOU9poFVAfoTVFaFStxGRYq454xVBjGWDIh0Wilc-5kaV3JZMgeOpx_W0i0ghkVoFtelScwCs9-HAPJcsO809Y4y5m2GPAlZ8JVHnUVedpOYZw8bb47WoomBqFJQTj7f-kc9qJgelf_voDRetniZUira3OVYrsFzUZ4IQ
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Financial+Forecasting+via+Quantum+Machine+Learning&rft.au=Thakkar%2C+Sohum&rft.au=Kazdaghli%2C+Skander&rft.au=Mathur%2C+Natansh&rft.au=Kerenidis%2C+Iordanis&rft.date=2023-05-31&rft_id=info:doi/10.48550%2Farxiv.2306.12965&rft.externalDocID=2306_12965