Improved Financial Forecasting via Quantum Machine Learning
Quantum algorithms have the potential to enhance machine learning across a variety of domains and applications. In this work, we show how quantum machine learning can be used to improve financial forecasting. First, we use classical and quantum Determinantal Point Processes to enhance Random Forest...
Saved in:
Main Authors | , , , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
31.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum algorithms have the potential to enhance machine learning across a
variety of domains and applications. In this work, we show how quantum machine
learning can be used to improve financial forecasting. First, we use classical
and quantum Determinantal Point Processes to enhance Random Forest models for
churn prediction, improving precision by almost 6%. Second, we design quantum
neural network architectures with orthogonal and compound layers for credit
risk assessment, which match classical performance with significantly fewer
parameters. Our results demonstrate that leveraging quantum ideas can
effectively enhance the performance of machine learning, both today as
quantum-inspired classical ML solutions, and even more in the future, with the
advent of better quantum hardware. |
---|---|
AbstractList | Quantum algorithms have the potential to enhance machine learning across a
variety of domains and applications. In this work, we show how quantum machine
learning can be used to improve financial forecasting. First, we use classical
and quantum Determinantal Point Processes to enhance Random Forest models for
churn prediction, improving precision by almost 6%. Second, we design quantum
neural network architectures with orthogonal and compound layers for credit
risk assessment, which match classical performance with significantly fewer
parameters. Our results demonstrate that leveraging quantum ideas can
effectively enhance the performance of machine learning, both today as
quantum-inspired classical ML solutions, and even more in the future, with the
advent of better quantum hardware. |
Author | Kazdaghli, Skander Thakkar, Sohum Mathur, Natansh Brito, Samurai Ferreira-Martins, André J Kerenidis, Iordanis |
Author_xml | – sequence: 1 givenname: Sohum surname: Thakkar fullname: Thakkar, Sohum organization: QC Ware Corp – sequence: 2 givenname: Skander surname: Kazdaghli fullname: Kazdaghli, Skander organization: QC Ware Corp – sequence: 3 givenname: Natansh surname: Mathur fullname: Mathur, Natansh organization: IRIF - Université Paris Cité and CNRS – sequence: 4 givenname: Iordanis surname: Kerenidis fullname: Kerenidis, Iordanis organization: IRIF - Université Paris Cité and CNRS – sequence: 5 givenname: André J surname: Ferreira-Martins fullname: Ferreira-Martins, André J organization: Itaú Unibanco – sequence: 6 givenname: Samurai surname: Brito fullname: Brito, Samurai organization: Itaú Unibanco |
BackLink | https://doi.org/10.48550/arXiv.2306.12965$$DView paper in arXiv |
BookMark | eNotj81qwkAUhWdhF9X6AK46L5B0JvOTGVyJNK2QIoL7cJ3c6EAyCaOG9u1rtatz4MDH-aZkEvqAhCw4S6VRir1B_PZjmgmmU55ZrZ7JctMNsR-xpoUPEJyHlhZ9RAfniw9HOnqguyuEy7WjX-BOPiAtEWK4jS_kqYH2jPP_nJF98b5ffybl9mOzXpUJ6FwlaJw1XGuGmWWqkRIt3joKqQ0ewAJXtRGuFtJILkBw6zKDTsuDZYbxXMzI6wN7f18N0XcQf6o_i-puIX4B5NpC5Q |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | AKY GOX |
DOI | 10.48550/arxiv.2306.12965 |
DatabaseName | arXiv Computer Science arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2306_12965 |
GroupedDBID | AKY GOX |
ID | FETCH-LOGICAL-a675-e8c981660e2905f44e9e0e2e3468eba9a15d83cd348413a319c28ec64b9080173 |
IEDL.DBID | GOX |
IngestDate | Sat Apr 06 12:19:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a675-e8c981660e2905f44e9e0e2e3468eba9a15d83cd348413a319c28ec64b9080173 |
OpenAccessLink | https://arxiv.org/abs/2306.12965 |
ParticipantIDs | arxiv_primary_2306_12965 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8852081 |
SecondaryResourceType | preprint |
Snippet | Quantum algorithms have the potential to enhance machine learning across a
variety of domains and applications. In this work, we show how quantum machine... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Learning Physics - Quantum Physics Quantitative Finance - Statistical Finance |
Title | Improved Financial Forecasting via Quantum Machine Learning |
URI | https://arxiv.org/abs/2306.12965 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB7anryIolKf5OA1uo8km-BJxFqEKkKFvS15TKQHRdpu8ec3yW7Ri7eQzGUmIfOFmXwfwLXz3jilHTUYrkDmREZVZRj1ylWSIxZlUmuYvYjpO3uueT0AsvsLo5c_i03HD2xWtxEf34SMJPgQhkURW7aeXuuuOJmouHr7X7uAMdPUnyQxOYD9Ht2R-247DmGAX0dw1z3c0ZHJjt6CREVMq1ex55hsFpq8tcHD9pPMUm8jkp729OMY5pPH-cOU9poFVAfoTVFaFStxGRYq454xVBjGWDIh0Wilc-5kaV3JZMgeOpx_W0i0ghkVoFtelScwCs9-HAPJcsO809Y4y5m2GPAlZ8JVHnUVedpOYZw8bb47WoomBqFJQTj7f-kc9qJgelf_voDRetniZUira3OVYrsFzUZ4IQ |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Financial+Forecasting+via+Quantum+Machine+Learning&rft.au=Thakkar%2C+Sohum&rft.au=Kazdaghli%2C+Skander&rft.au=Mathur%2C+Natansh&rft.au=Kerenidis%2C+Iordanis&rft.date=2023-05-31&rft_id=info:doi/10.48550%2Farxiv.2306.12965&rft.externalDocID=2306_12965 |