Anomaly Detection and Approximate Similarity Searches of Transients in Real-time Data Streams

We present LAISS (Lightcurve Anomaly Identification and Similarity Search), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly ZTF Alert Stream via the ANTARES broker, identifying a manageable $\sim$1-5 c...

Full description

Saved in:
Bibliographic Details
Main Authors Aleo, P. D, Engel, A. W, Narayan, G, Angus, C. R, Malanchev, K, Auchettl, K, Baldassare, V. F, Berres, A, de Boer, T. J. L, Boyd, B. M, Chambers, K. C, Davis, K. W, Esquivel, N, Farias, D, Foley, R. J, Gagliano, A, Gall, C, Gao, H, Gomez, S, Grayling, M, Jones, D. O, Lin, C. -C, Magnier, E. A, Mandel, K. S, Matheson, T, Raimundo, S. I, Shah, V. G, Soraisam, M. D, de Soto, K. M, Vicencio, S, Villar, V. A, Wainscoat, R. J
Format Journal Article
LanguageEnglish
Published 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present LAISS (Lightcurve Anomaly Identification and Similarity Search), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly ZTF Alert Stream via the ANTARES broker, identifying a manageable $\sim$1-5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host-galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic anomalies), of uncommon host-galaxy environments (contextual anomalies), and of peculiar or interaction-powered phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency ($\sim$ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host-galaxy environments. We use analogs for data-driven discovery, characterization, (re-)classification, and imputation in retrospective and real-time searches. To date we have identified $\sim$50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to: SLSNe, TDEs, SNe IIn, SNe IIb, SNe Ia-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018-2021 and absent from public catalogs ($\sim$1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the "needle in the haystack" in large-volume data streams. Because of its integration with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.
AbstractList We present LAISS (Lightcurve Anomaly Identification and Similarity Search), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly ZTF Alert Stream via the ANTARES broker, identifying a manageable $\sim$1-5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host-galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic anomalies), of uncommon host-galaxy environments (contextual anomalies), and of peculiar or interaction-powered phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency ($\sim$ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host-galaxy environments. We use analogs for data-driven discovery, characterization, (re-)classification, and imputation in retrospective and real-time searches. To date we have identified $\sim$50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to: SLSNe, TDEs, SNe IIn, SNe IIb, SNe Ia-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018-2021 and absent from public catalogs ($\sim$1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the "needle in the haystack" in large-volume data streams. Because of its integration with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.
Author Raimundo, S. I
Wainscoat, R. J
Aleo, P. D
Magnier, E. A
Grayling, M
Farias, D
Gomez, S
Gao, H
Chambers, K. C
Gall, C
Berres, A
Vicencio, S
Auchettl, K
Villar, V. A
Esquivel, N
Mandel, K. S
Boyd, B. M
Gagliano, A
Baldassare, V. F
Davis, K. W
Matheson, T
Jones, D. O
de Boer, T. J. L
Engel, A. W
Malanchev, K
Lin, C. -C
Foley, R. J
Soraisam, M. D
de Soto, K. M
Shah, V. G
Narayan, G
Angus, C. R
Author_xml – sequence: 1
  givenname: P. D
  surname: Aleo
  fullname: Aleo, P. D
– sequence: 2
  givenname: A. W
  surname: Engel
  fullname: Engel, A. W
– sequence: 3
  givenname: G
  surname: Narayan
  fullname: Narayan, G
– sequence: 4
  givenname: C. R
  surname: Angus
  fullname: Angus, C. R
– sequence: 5
  givenname: K
  surname: Malanchev
  fullname: Malanchev, K
– sequence: 6
  givenname: K
  surname: Auchettl
  fullname: Auchettl, K
– sequence: 7
  givenname: V. F
  surname: Baldassare
  fullname: Baldassare, V. F
– sequence: 8
  givenname: A
  surname: Berres
  fullname: Berres, A
– sequence: 9
  givenname: T. J. L
  surname: de Boer
  fullname: de Boer, T. J. L
– sequence: 10
  givenname: B. M
  surname: Boyd
  fullname: Boyd, B. M
– sequence: 11
  givenname: K. C
  surname: Chambers
  fullname: Chambers, K. C
– sequence: 12
  givenname: K. W
  surname: Davis
  fullname: Davis, K. W
– sequence: 13
  givenname: N
  surname: Esquivel
  fullname: Esquivel, N
– sequence: 14
  givenname: D
  surname: Farias
  fullname: Farias, D
– sequence: 15
  givenname: R. J
  surname: Foley
  fullname: Foley, R. J
– sequence: 16
  givenname: A
  surname: Gagliano
  fullname: Gagliano, A
– sequence: 17
  givenname: C
  surname: Gall
  fullname: Gall, C
– sequence: 18
  givenname: H
  surname: Gao
  fullname: Gao, H
– sequence: 19
  givenname: S
  surname: Gomez
  fullname: Gomez, S
– sequence: 20
  givenname: M
  surname: Grayling
  fullname: Grayling, M
– sequence: 21
  givenname: D. O
  surname: Jones
  fullname: Jones, D. O
– sequence: 22
  givenname: C. -C
  surname: Lin
  fullname: Lin, C. -C
– sequence: 23
  givenname: E. A
  surname: Magnier
  fullname: Magnier, E. A
– sequence: 24
  givenname: K. S
  surname: Mandel
  fullname: Mandel, K. S
– sequence: 25
  givenname: T
  surname: Matheson
  fullname: Matheson, T
– sequence: 26
  givenname: S. I
  surname: Raimundo
  fullname: Raimundo, S. I
– sequence: 27
  givenname: V. G
  surname: Shah
  fullname: Shah, V. G
– sequence: 28
  givenname: M. D
  surname: Soraisam
  fullname: Soraisam, M. D
– sequence: 29
  givenname: K. M
  surname: de Soto
  fullname: de Soto, K. M
– sequence: 30
  givenname: S
  surname: Vicencio
  fullname: Vicencio, S
– sequence: 31
  givenname: V. A
  surname: Villar
  fullname: Villar, V. A
– sequence: 32
  givenname: R. J
  surname: Wainscoat
  fullname: Wainscoat, R. J
BackLink https://doi.org/10.48550/arXiv.2404.01235$$DView paper in arXiv
BookMark eNotz81qhDAUBeAs2kU77QPMqnkB7Y0ajUuZ6R8MFKrbQa7JlQY0SgxlfPtOp7M6cBaH892zGzc5YmwrIM6UlPCM_mR_4iSDLAaRpPKOHSs3jTisfE-BdLCT4-gMr-bZTyc7YiBe29EO6G1YeU3o9TctfOp549EtllxYuHX8i3CIgh2J7zEgr4MnHJcHdtvjsNDjNTeseX1pdu_R4fPtY1cdIswLGRV9qbDD3nRG5EkCpU4FqK47d5KKElQJupM6TwCEyqSSBqQoQJhcl5gbTDfs6X_24mtnfz7u1_bP2V6c6S-qD0_t
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID GOX
DOI 10.48550/arxiv.2404.01235
DatabaseName arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2404_01235
GroupedDBID GOX
ID FETCH-LOGICAL-a675-7f98abafdbd162209c3108bbaba5e790890cb5c6200184585d051701d6c9a6da3
IEDL.DBID GOX
IngestDate Sat Jul 27 12:10:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-7f98abafdbd162209c3108bbaba5e790890cb5c6200184585d051701d6c9a6da3
OpenAccessLink https://arxiv.org/abs/2404.01235
ParticipantIDs arxiv_primary_2404_01235
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationYear 2024
Score 1.9141207
SecondaryResourceType preprint
Snippet We present LAISS (Lightcurve Anomaly Identification and Similarity Search), an automated pipeline to detect anomalous astrophysical transients in real-time...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Physics - High Energy Astrophysical Phenomena
Physics - Instrumentation and Methods for Astrophysics
Title Anomaly Detection and Approximate Similarity Searches of Transients in Real-time Data Streams
URI https://arxiv.org/abs/2404.01235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELXaTiwIBKh8ygOrwUljOxkrSqmQAAmK1AVVd4ktRaIpalJU_j1npwgWVtvT8_De-d49M3apcu2kQRCIAysSlEpkUqcijyQ6ZQAd-mnkh0c9eU3uZ2rWYfxnFgZWm_KzzQfG-proJrkK45xd1o1jb9m6e5q1zckQxbU9_3uONGZY-kMS4z22u1V3fNhexz7r2OqAvVGJvYD3Lz6yTTA-VZzKdz70ad6bkhSj5S_loqQSkxQxb_2_tuZLxwOR-IHFmpcVfyZNJ_xf8HwEDXDfT4ZFfcim49vpzURsfzUQQOJcGJelgOAKLCIdxzLLSWCliLSmrPFdOJkjIei9TmlCYr7wKVoyKnSegS5gcMR61bKyfcZRKW2c8g8SNolBgh7kEsCQxpM2yswx6wcs5h9tcMXcwzQPMJ38v3XKdmIi7tadcsZ6zWptz4l4G7wI6H8DTAiDuA
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+Detection+and+Approximate+Similarity+Searches+of+Transients+in+Real-time+Data+Streams&rft.au=Aleo%2C+P.+D&rft.au=Engel%2C+A.+W&rft.au=Narayan%2C+G&rft.au=Angus%2C+C.+R&rft.date=2024-04-01&rft_id=info:doi/10.48550%2Farxiv.2404.01235&rft.externalDocID=2404_01235