Optimal Strong Approximation of the One-dimensional Squared {B}essel Process
We consider the one-dimensional squared Bessel process given by the stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt + 2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study strong (pathwise) approximation of the solution $X$ at the final time point $t=1$. This S...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
07.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the one-dimensional squared Bessel process given by the
stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt +
2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study
strong (pathwise) approximation of the solution $X$ at the final time point
$t=1$. This SDE is a particular instance of a Cox-Ingersoll-Ross (CIR) process
where the boundary point zero is accessible. We consider numerical methods that
have access to values of the driving Brownian motion $W$ at a finite number of
time points. We show that the polynomial convergence rate of the $n$-th minimal
errors for the class of adaptive algorithms as well as for the class of
algorithms that rely on equidistant grids are equal to infinity and $1/2$,
respectively. This shows that adaption results in a tremendously improved
convergence rate. As a by-product, we obtain that the parameters appearing in
the CIR process affect the convergence rate of strong approximation. |
---|---|
AbstractList | We consider the one-dimensional squared Bessel process given by the
stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt +
2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study
strong (pathwise) approximation of the solution $X$ at the final time point
$t=1$. This SDE is a particular instance of a Cox-Ingersoll-Ross (CIR) process
where the boundary point zero is accessible. We consider numerical methods that
have access to values of the driving Brownian motion $W$ at a finite number of
time points. We show that the polynomial convergence rate of the $n$-th minimal
errors for the class of adaptive algorithms as well as for the class of
algorithms that rely on equidistant grids are equal to infinity and $1/2$,
respectively. This shows that adaption results in a tremendously improved
convergence rate. As a by-product, we obtain that the parameters appearing in
the CIR process affect the convergence rate of strong approximation. |
Author | Hefter, Mario Herzwurm, André |
Author_xml | – sequence: 1 givenname: Mario surname: Hefter fullname: Hefter, Mario – sequence: 2 givenname: André surname: Herzwurm fullname: Herzwurm, André |
BackLink | https://doi.org/10.48550/arXiv.1601.01455$$DView paper in arXiv |
BookMark | eNotj8tOwzAURL2ABRQ-gBX-gYR742eXpeIlRQoS3UdubEOk1A5OQEWIf8ctrGY0Go3mnJOTEIMj5Aqh5FoIuDFp33-WKAFLQC7EGambce53ZqAvc4rhla7GMcV9TuY-Bho9nd8cbYIrbL9zYcrhofv-YZKz9Pv2x02TG-hzil12F-TUm2Fyl_-6IJv7u836saibh6f1qi6MVKJg3msHrJNZq6VmHhC4kWg8B40dKK64VFuLlam2QiMACMctWiWXQhjJFuT6b_aI044p301f7QGrPWKxX7NmSUc |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.1601.01455 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 1601_01455 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a675-3ff8e03c6ff82983f0104a61af4081c0747467bd12a2b5810005e4d1d76955a63 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:46:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a675-3ff8e03c6ff82983f0104a61af4081c0747467bd12a2b5810005e4d1d76955a63 |
OpenAccessLink | https://arxiv.org/abs/1601.01455 |
ParticipantIDs | arxiv_primary_1601_01455 |
PublicationCentury | 2000 |
PublicationDate | 2016-01-07 |
PublicationDateYYYYMMDD | 2016-01-07 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationYear | 2016 |
Score | 1.6208793 |
SecondaryResourceType | preprint |
Snippet | We consider the one-dimensional squared Bessel process given by the
stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt +
2\sqrt{X_t}\,dW_t,... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Numerical Analysis Mathematics - Probability |
Title | Optimal Strong Approximation of the One-dimensional Squared {B}essel Process |
URI | https://arxiv.org/abs/1601.01455 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PS8MwFMcf205eRFGZP8nBa3BtmrQ5TnEOUXfYhN1G0iQy0E7nJgPxf_e9pqIXT4EkPfSFvvfN68snAOchKYLVpePo-DKeOYF-UDvJe8GVzlgbdJ3TvX9Qw8fsdiqnLWA_Z2HMcjP_iHxg-36RKEJqEku7De00pZKtm9E0_pysUVzN_N95qDHrrj9BYrAD2426Y_24HLvQ8tUe3I3ws3zB7jGlnZ9YnzDem3k8M8gWgaEGY6PKc0ek_UjJYOO3NZWGs8_LL6J7P7Omon8fJoPrydWQN5cYcINanIsQCt8TpcI21YUItP8xKjEhw2BcEr4eXZV1SWpSKwvKtkufucTlSktplDiATrWofBeYlFbTdqzwAp8xxjjv8kKrtCescjI_hG796rPXyKmYkVVmtVWO_h86hi3UADGrkJ9AZ7Vc-1OMsyt7Vhv7GxpkfWU |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Strong+Approximation+of+the+One-dimensional+Squared+%7BB%7Dessel+Process&rft.au=Hefter%2C+Mario&rft.au=Herzwurm%2C+Andr%C3%A9&rft.date=2016-01-07&rft_id=info:doi/10.48550%2Farxiv.1601.01455&rft.externalDocID=1601_01455 |