Optimal Strong Approximation of the One-dimensional Squared {B}essel Process

We consider the one-dimensional squared Bessel process given by the stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt + 2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study strong (pathwise) approximation of the solution $X$ at the final time point $t=1$. This S...

Full description

Saved in:
Bibliographic Details
Main Authors Hefter, Mario, Herzwurm, André
Format Journal Article
LanguageEnglish
Published 07.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the one-dimensional squared Bessel process given by the stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt + 2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study strong (pathwise) approximation of the solution $X$ at the final time point $t=1$. This SDE is a particular instance of a Cox-Ingersoll-Ross (CIR) process where the boundary point zero is accessible. We consider numerical methods that have access to values of the driving Brownian motion $W$ at a finite number of time points. We show that the polynomial convergence rate of the $n$-th minimal errors for the class of adaptive algorithms as well as for the class of algorithms that rely on equidistant grids are equal to infinity and $1/2$, respectively. This shows that adaption results in a tremendously improved convergence rate. As a by-product, we obtain that the parameters appearing in the CIR process affect the convergence rate of strong approximation.
AbstractList We consider the one-dimensional squared Bessel process given by the stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt + 2\sqrt{X_t}\,dW_t, \quad X_0=x_0, \quad t\in[0,1], \end{align*} and study strong (pathwise) approximation of the solution $X$ at the final time point $t=1$. This SDE is a particular instance of a Cox-Ingersoll-Ross (CIR) process where the boundary point zero is accessible. We consider numerical methods that have access to values of the driving Brownian motion $W$ at a finite number of time points. We show that the polynomial convergence rate of the $n$-th minimal errors for the class of adaptive algorithms as well as for the class of algorithms that rely on equidistant grids are equal to infinity and $1/2$, respectively. This shows that adaption results in a tremendously improved convergence rate. As a by-product, we obtain that the parameters appearing in the CIR process affect the convergence rate of strong approximation.
Author Hefter, Mario
Herzwurm, André
Author_xml – sequence: 1
  givenname: Mario
  surname: Hefter
  fullname: Hefter, Mario
– sequence: 2
  givenname: André
  surname: Herzwurm
  fullname: Herzwurm, André
BackLink https://doi.org/10.48550/arXiv.1601.01455$$DView paper in arXiv
BookMark eNotj8tOwzAURL2ABRQ-gBX-gYR742eXpeIlRQoS3UdubEOk1A5OQEWIf8ctrGY0Go3mnJOTEIMj5Aqh5FoIuDFp33-WKAFLQC7EGambce53ZqAvc4rhla7GMcV9TuY-Bho9nd8cbYIrbL9zYcrhofv-YZKz9Pv2x02TG-hzil12F-TUm2Fyl_-6IJv7u836saibh6f1qi6MVKJg3msHrJNZq6VmHhC4kWg8B40dKK64VFuLlam2QiMACMctWiWXQhjJFuT6b_aI044p301f7QGrPWKxX7NmSUc
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1601.01455
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1601_01455
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a675-3ff8e03c6ff82983f0104a61af4081c0747467bd12a2b5810005e4d1d76955a63
IEDL.DBID GOX
IngestDate Mon Jan 08 05:46:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-3ff8e03c6ff82983f0104a61af4081c0747467bd12a2b5810005e4d1d76955a63
OpenAccessLink https://arxiv.org/abs/1601.01455
ParticipantIDs arxiv_primary_1601_01455
PublicationCentury 2000
PublicationDate 2016-01-07
PublicationDateYYYYMMDD 2016-01-07
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-07
  day: 07
PublicationDecade 2010
PublicationYear 2016
Score 1.6208793
SecondaryResourceType preprint
Snippet We consider the one-dimensional squared Bessel process given by the stochastic differential equation (SDE) \begin{align*} dX_t = 1\,dt + 2\sqrt{X_t}\,dW_t,...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Numerical Analysis
Mathematics - Probability
Title Optimal Strong Approximation of the One-dimensional Squared {B}essel Process
URI https://arxiv.org/abs/1601.01455
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PS8MwFMcf205eRFGZP8nBa3BtmrQ5TnEOUXfYhN1G0iQy0E7nJgPxf_e9pqIXT4EkPfSFvvfN68snAOchKYLVpePo-DKeOYF-UDvJe8GVzlgbdJ3TvX9Qw8fsdiqnLWA_Z2HMcjP_iHxg-36RKEJqEku7De00pZKtm9E0_pysUVzN_N95qDHrrj9BYrAD2426Y_24HLvQ8tUe3I3ws3zB7jGlnZ9YnzDem3k8M8gWgaEGY6PKc0ek_UjJYOO3NZWGs8_LL6J7P7Omon8fJoPrydWQN5cYcINanIsQCt8TpcI21YUItP8xKjEhw2BcEr4eXZV1SWpSKwvKtkufucTlSktplDiATrWofBeYlFbTdqzwAp8xxjjv8kKrtCescjI_hG796rPXyKmYkVVmtVWO_h86hi3UADGrkJ9AZ7Vc-1OMsyt7Vhv7GxpkfWU
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Strong+Approximation+of+the+One-dimensional+Squared+%7BB%7Dessel+Process&rft.au=Hefter%2C+Mario&rft.au=Herzwurm%2C+Andr%C3%A9&rft.date=2016-01-07&rft_id=info:doi/10.48550%2Farxiv.1601.01455&rft.externalDocID=1601_01455