Performance of the Uniform Closure Method for open knotting as a Bayes-type classifier

The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of differe...

Full description

Saved in:
Bibliographic Details
Main Authors Tibor, Emily, Annoni, Elizabeth M, Brine-Doyle, Erin, Kumerow, Nicole, Shogren, Madeline, Cantarella, Jason, Shonkwiler, Clayton, Rawdon, Eric J
Format Journal Article
LanguageEnglish
Published 17.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of different knot types among these closures. In this paper, we think of assigning knot types to open curves as a classification problem and compare the performance of the Bayes MAP classifier to the standard Uniform Closure Method. Surprisingly, we find that both methods are essentially equivalent as classifiers, having comparable accuracy and positive predictive value across a wide range of input arc lengths and knot types.
AbstractList The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of different knot types among these closures. In this paper, we think of assigning knot types to open curves as a classification problem and compare the performance of the Bayes MAP classifier to the standard Uniform Closure Method. Surprisingly, we find that both methods are essentially equivalent as classifiers, having comparable accuracy and positive predictive value across a wide range of input arc lengths and knot types.
Author Cantarella, Jason
Kumerow, Nicole
Brine-Doyle, Erin
Annoni, Elizabeth M
Shogren, Madeline
Tibor, Emily
Shonkwiler, Clayton
Rawdon, Eric J
Author_xml – sequence: 1
  givenname: Emily
  surname: Tibor
  fullname: Tibor, Emily
– sequence: 2
  givenname: Elizabeth M
  surname: Annoni
  fullname: Annoni, Elizabeth M
– sequence: 3
  givenname: Erin
  surname: Brine-Doyle
  fullname: Brine-Doyle, Erin
– sequence: 4
  givenname: Nicole
  surname: Kumerow
  fullname: Kumerow, Nicole
– sequence: 5
  givenname: Madeline
  surname: Shogren
  fullname: Shogren, Madeline
– sequence: 6
  givenname: Jason
  surname: Cantarella
  fullname: Cantarella, Jason
– sequence: 7
  givenname: Clayton
  surname: Shonkwiler
  fullname: Shonkwiler, Clayton
– sequence: 8
  givenname: Eric J
  surname: Rawdon
  fullname: Rawdon, Eric J
BackLink https://doi.org/10.48550/arXiv.2011.08984$$DView paper in arXiv
BookMark eNotz71OwzAUhmEPMEDhApjwDSTY9cmPR4j4k4pgKKzRiX1MLVI7sgOidw8tTJ_0Dp_0nLKjEAMxdiFFCW1ViStM3_6rXAopS9HqFk7Y2wslF9MWgyEeHZ83xF-D3yfejTF_JuJPNG-i5b-Nx4kC_whxnn1455g58hvcUS7m3UTcjJizd57SGTt2OGY6_98FW9_drruHYvV8_9hdrwqsGygGa7SkWggg11hdgxHODlC3VgwSJCqtxGAAjNKuAo0NgJZLcJbQtIaUWrDLv9sDrJ-S32La9XtgfwCqHxmHTcc
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2011.08984
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2011_08984
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a674-bdc91e6004ef7d964c0fdb468d0b141a3930bc44c39f549a7449124fdeac8ce33
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a674-bdc91e6004ef7d964c0fdb468d0b141a3930bc44c39f549a7449124fdeac8ce33
OpenAccessLink https://arxiv.org/abs/2011.08984
ParticipantIDs arxiv_primary_2011_08984
PublicationCentury 2000
PublicationDate 2020-11-17
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-17
  day: 17
PublicationDecade 2020
PublicationYear 2020
Score 1.7914021
SecondaryResourceType preprint
Snippet The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Geometric Topology
Title Performance of the Uniform Closure Method for open knotting as a Bayes-type classifier
URI https://arxiv.org/abs/2011.08984
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELbaTiwIBKg8dQOrRR7XJB6holRIBYaCslVnx5YqUILaguDfc3aCysJ6fgxny99353sIccn3NnIMRJLRyEi0o1RSgk4mVsWFtZm2ic8dnj1k02e8L0dlT8BvLgytvpafbX1gvb7qKmyqAvuinyQ-ZOvusWw_J0Mprm7-dh5zzCD6AxKTPbHbsTu4bo9jX_RsfSBenrbB-dA4YMoFTPW8CMZvjXfRwSw0cgaWge9nBa91EwKSgdZAcEPfdi29txSMZ7tLx2B2KOaT2_l4Krt2BpKyHKWujIot8wu0Lq9UhiZylcasqCIdY0ypSiNtEE2qHBttlCMqBl9X8dNYGJumR2JQN7UdCiBbKUu8Ujlv4BhtYiLeOdWEWUTqWAyDEhbvbcWKhdfPIujn5P-hU7GTeGPSx7jlZ2KwWX3Yc0bcjb4Iav8BRlCCAg
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+the+Uniform+Closure+Method+for+open+knotting+as+a+Bayes-type+classifier&rft.au=Tibor%2C+Emily&rft.au=Annoni%2C+Elizabeth+M&rft.au=Brine-Doyle%2C+Erin&rft.au=Kumerow%2C+Nicole&rft.date=2020-11-17&rft_id=info:doi/10.48550%2Farxiv.2011.08984&rft.externalDocID=2011_08984