Mechanised uniform interpolation for modal logics K, GL, and iSL
The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
16.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The uniform interpolation property in a given logic can be understood as the
definability of propositional quantifiers. We mechanise the computation of
these quantifiers and prove correctness in the Coq proof assistant for three
modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof
exists; (2) G\"odel-L\"ob logic GL, for which our formalisation clarifies an
important point in an existing, but incomplete, sequent-style proof; and (3)
intuitionistic strong L\"ob logic iSL, for which this is the first
proof-theoretic construction of uniform interpolants. Our work also yields
verified programs that allow one to compute the propositional quantifiers on
any formula in this logic. |
---|---|
AbstractList | The uniform interpolation property in a given logic can be understood as the
definability of propositional quantifiers. We mechanise the computation of
these quantifiers and prove correctness in the Coq proof assistant for three
modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof
exists; (2) G\"odel-L\"ob logic GL, for which our formalisation clarifies an
important point in an existing, but incomplete, sequent-style proof; and (3)
intuitionistic strong L\"ob logic iSL, for which this is the first
proof-theoretic construction of uniform interpolants. Our work also yields
verified programs that allow one to compute the propositional quantifiers on
any formula in this logic. |
Author | Shillito, Ian Férée, Hugo van der Giessen, Iris van Gool, Sam |
Author_xml | – sequence: 1 givenname: Hugo surname: Férée fullname: Férée, Hugo – sequence: 2 givenname: Iris surname: van der Giessen fullname: van der Giessen, Iris – sequence: 3 givenname: Sam surname: van Gool fullname: van Gool, Sam – sequence: 4 givenname: Ian surname: Shillito fullname: Shillito, Ian |
BackLink | https://doi.org/10.48550/arXiv.2402.10494$$DView paper in arXiv |
BookMark | eNotz8tOwzAUBFAvYAGFD2CFP6AJN7bjxw5UQYsIYkH30fUjYCmxK6cg-HtKYTXSSDPSOScnKadAyFUDtdBtCzdYvuJnzQSwugFhxBm5fQ7uHVOcg6cfKQ65TDSmfSi7POI-5kQPFZ2yx5GO-S26mT4t6bpbUkyextfugpwOOM7h8j8XZPtwv11tqu5l_bi66yqUSlQWeaOYNUqbQTdgpBDODwy8Clay1jFtEMBq5XUwWoILkjvg1jMU7rDhC3L9d3sk9LsSJyzf_S-lP1L4DwjtRDs |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by-nc-nd/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by-nc-nd/4.0 |
DBID | AKY AKZ GOX |
DOI | 10.48550/arxiv.2402.10494 |
DatabaseName | arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2402_10494 |
GroupedDBID | AKY AKZ GOX |
ID | FETCH-LOGICAL-a674-ba3172b9789f8109644cdf20d7eb625c289a00b87d8e9860ce63c03bd2a4c89f3 |
IEDL.DBID | GOX |
IngestDate | Wed May 01 13:22:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a674-ba3172b9789f8109644cdf20d7eb625c289a00b87d8e9860ce63c03bd2a4c89f3 |
OpenAccessLink | https://arxiv.org/abs/2402.10494 |
ParticipantIDs | arxiv_primary_2402_10494 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-16 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
Score | 1.9107572 |
SecondaryResourceType | preprint |
Snippet | The uniform interpolation property in a given logic can be understood as the
definability of propositional quantifiers. We mechanise the computation of
these... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Logic in Computer Science Mathematics - Logic |
Title | Mechanised uniform interpolation for modal logics K, GL, and iSL |
URI | https://arxiv.org/abs/2402.10494 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQCFB5ygNjLVzHTuINhGgraGGgSNkiPy5ShhbUB-Lnc06KYGE9-wafJX_3-V4A18aFDIVF7oP1XKUoONEIzY2UmIkqMVWIhcKz53Typh4LXXSA_dTC2NVX_dn2B3brm_j1H6OQRnWhK2VM2Rq_FG1wsmnFtdv_u498zEb0ByRGB7C_8-7YXXsdh9DB5RHczjCW19ZrDGy7jJVQC1a3463aRDRGIrZ4D6TZvERr9jRg4-mAEctn9ev0GOajh_n9hO8GF3CbZoo7S6AsHfEzU-VD4ghK-VBJEeL8Eak9cRwrhMuzkKPJU-ExTbxIXJBWedJJTqBH3B_7wHTlBZJToiokHPbakjcjbWa1zk3mtTiFfnPc8qPtTVFGS5SNJc7-XzqHPUnYHJOPh-kF9DarLV4Stm7cVWPgb2RkeEc |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanised+uniform+interpolation+for+modal+logics+K%2C+GL%2C+and+iSL&rft.au=F%C3%A9r%C3%A9e%2C+Hugo&rft.au=van+der+Giessen%2C+Iris&rft.au=van+Gool%2C+Sam&rft.au=Shillito%2C+Ian&rft.date=2024-02-16&rft_id=info:doi/10.48550%2Farxiv.2402.10494&rft.externalDocID=2402_10494 |