Mechanised uniform interpolation for modal logics K, GL, and iSL

The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper...

Full description

Saved in:
Bibliographic Details
Main Authors Férée, Hugo, van der Giessen, Iris, van Gool, Sam, Shillito, Ian
Format Journal Article
LanguageEnglish
Published 16.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) G\"odel-L\"ob logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong L\"ob logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic.
AbstractList The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) G\"odel-L\"ob logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong L\"ob logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic.
Author Shillito, Ian
Férée, Hugo
van der Giessen, Iris
van Gool, Sam
Author_xml – sequence: 1
  givenname: Hugo
  surname: Férée
  fullname: Férée, Hugo
– sequence: 2
  givenname: Iris
  surname: van der Giessen
  fullname: van der Giessen, Iris
– sequence: 3
  givenname: Sam
  surname: van Gool
  fullname: van Gool, Sam
– sequence: 4
  givenname: Ian
  surname: Shillito
  fullname: Shillito, Ian
BackLink https://doi.org/10.48550/arXiv.2402.10494$$DView paper in arXiv
BookMark eNotz8tOwzAUBFAvYAGFD2CFP6AJN7bjxw5UQYsIYkH30fUjYCmxK6cg-HtKYTXSSDPSOScnKadAyFUDtdBtCzdYvuJnzQSwugFhxBm5fQ7uHVOcg6cfKQ65TDSmfSi7POI-5kQPFZ2yx5GO-S26mT4t6bpbUkyextfugpwOOM7h8j8XZPtwv11tqu5l_bi66yqUSlQWeaOYNUqbQTdgpBDODwy8Clay1jFtEMBq5XUwWoILkjvg1jMU7rDhC3L9d3sk9LsSJyzf_S-lP1L4DwjtRDs
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.2402.10494
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2402_10494
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a674-ba3172b9789f8109644cdf20d7eb625c289a00b87d8e9860ce63c03bd2a4c89f3
IEDL.DBID GOX
IngestDate Wed May 01 13:22:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a674-ba3172b9789f8109644cdf20d7eb625c289a00b87d8e9860ce63c03bd2a4c89f3
OpenAccessLink https://arxiv.org/abs/2402.10494
ParticipantIDs arxiv_primary_2402_10494
PublicationCentury 2000
PublicationDate 2024-02-16
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-16
  day: 16
PublicationDecade 2020
PublicationYear 2024
Score 1.9107572
SecondaryResourceType preprint
Snippet The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Logic in Computer Science
Mathematics - Logic
Title Mechanised uniform interpolation for modal logics K, GL, and iSL
URI https://arxiv.org/abs/2402.10494
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQCFB5ygNjLVzHTuINhGgraGGgSNkiPy5ShhbUB-Lnc06KYGE9-wafJX_3-V4A18aFDIVF7oP1XKUoONEIzY2UmIkqMVWIhcKz53Typh4LXXSA_dTC2NVX_dn2B3brm_j1H6OQRnWhK2VM2Rq_FG1wsmnFtdv_u498zEb0ByRGB7C_8-7YXXsdh9DB5RHczjCW19ZrDGy7jJVQC1a3463aRDRGIrZ4D6TZvERr9jRg4-mAEctn9ev0GOajh_n9hO8GF3CbZoo7S6AsHfEzU-VD4ghK-VBJEeL8Eak9cRwrhMuzkKPJU-ExTbxIXJBWedJJTqBH3B_7wHTlBZJToiokHPbakjcjbWa1zk3mtTiFfnPc8qPtTVFGS5SNJc7-XzqHPUnYHJOPh-kF9DarLV4Stm7cVWPgb2RkeEc
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanised+uniform+interpolation+for+modal+logics+K%2C+GL%2C+and+iSL&rft.au=F%C3%A9r%C3%A9e%2C+Hugo&rft.au=van+der+Giessen%2C+Iris&rft.au=van+Gool%2C+Sam&rft.au=Shillito%2C+Ian&rft.date=2024-02-16&rft_id=info:doi/10.48550%2Farxiv.2402.10494&rft.externalDocID=2402_10494