Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants

Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic wh...

Full description

Saved in:
Bibliographic Details
Main Authors Qian, Cheng, Qi, Haode, Wang, Gengyu, Kunc, Ladislav, Potdar, Saloni
Format Journal Article
LanguageEnglish
Published 16.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.
AbstractList Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the end-user query. Accurately tagging a query as out-of-domain is particularly hard in scenarios when the chatbot is not equipped to handle a topic which has semantic overlap with an existing topic it is trained on. We propose a simple yet effective OOS detection method that outperforms standard OOS detection methods in a real-world deployment of virtual assistants. We discuss the various design and deployment considerations for a cloud platform solution to train virtual assistants and deploy them at scale. Additionally, we propose a collection of datasets that replicates real-world scenarios and show comprehensive results in various settings using both offline and online evaluation metrics.
Author Qian, Cheng
Kunc, Ladislav
Wang, Gengyu
Potdar, Saloni
Qi, Haode
Author_xml – sequence: 1
  givenname: Cheng
  surname: Qian
  fullname: Qian, Cheng
– sequence: 2
  givenname: Haode
  surname: Qi
  fullname: Qi, Haode
– sequence: 3
  givenname: Gengyu
  surname: Wang
  fullname: Wang, Gengyu
– sequence: 4
  givenname: Ladislav
  surname: Kunc
  fullname: Kunc, Ladislav
– sequence: 5
  givenname: Saloni
  surname: Potdar
  fullname: Potdar, Saloni
BackLink https://doi.org/10.48550/arXiv.2301.06544$$DView paper in arXiv
BookMark eNotj7FOwzAURT3AAIUPYMI_kJDYz4nDVrVAkap2aMUa2c4zWGrtynYQ_D2hIF3p3OlI55pc-OCRkLu6KkEKUT2o-OU-S8aruqwaAXBFNkuXsvPvo0sfdIc-IbUxHOkmTHfaI92OuQi22JlwQrrEjCa74KkNkb65mEd1oPOUJovyOd2QS6sOCW__OSP756f9YlWsty-vi_m6UE0LhW4kqywYCQaMQIbQcUStWCdrPWBnBHBUskXT1rxrtJFCDwMAAxB2GDSfkfs_7TmoP0V3VPG7_w3rz2H8B4PRS3I
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2301.06544
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2301_06544
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a674-b6820f4c84c4c5e2e493eeba2981bde9c543ea87ec71396bc85bdd442445fddb3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:37:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a674-b6820f4c84c4c5e2e493eeba2981bde9c543ea87ec71396bc85bdd442445fddb3
OpenAccessLink https://arxiv.org/abs/2301.06544
ParticipantIDs arxiv_primary_2301_06544
PublicationCentury 2000
PublicationDate 2023-01-16
PublicationDateYYYYMMDD 2023-01-16
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-16
  day: 16
PublicationDecade 2020
PublicationYear 2023
Score 1.8709615
SecondaryResourceType preprint
Snippet Out of Scope (OOS) detection in Conversational AI solutions enables a chatbot to handle a conversation gracefully when it is unable to make sense of the...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computation and Language
Title Distinguish Sense from Nonsense: Out-of-Scope Detection for Virtual Assistants
URI https://arxiv.org/abs/2301.06544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELXaTiwIBKh8ygOrASd2YrMhSqkY0qEFdav8cYEuKWrTip_PXVIEC5In27LkZ1n3zr53x9i1isE66bQAnxmh0lAKkzqL190a0A7IZlG0RZGNXtXLTM86jP9oYdzqa7Ft8wP79S3yY3lD8kfVZd0koZCt5_Gs_ZxsUnHt5v_OQ47ZdP0xEsMDtr9jd_yhPY5D1oHqiBUDukfV-2ax_uATdBuBk6iDFxTIjO2ejze1WJZiQgoRPoC6CY-qOPJJ_rZYkcKDI4zE9Kp6fcymw6fp40jsyhgIl-VKIAbJXamCUUEFDQkomwJ4l1hkjBFs0CoFZ3II6C_azAejfYyKBGi6jNGnJ6xXLSvoMy4ROAAZTMiDirL0PrPSugTXjcb7cMr6zebnn22mijnhMm9wOft_6JztUQ11eleQ2QXr1asNXKKlrf1VA_c3S0p_0g
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinguish+Sense+from+Nonsense%3A+Out-of-Scope+Detection+for+Virtual+Assistants&rft.au=Qian%2C+Cheng&rft.au=Qi%2C+Haode&rft.au=Wang%2C+Gengyu&rft.au=Kunc%2C+Ladislav&rft.date=2023-01-16&rft_id=info:doi/10.48550%2Farxiv.2301.06544&rft.externalDocID=2301_06544