Combining Stream Mining and Neural Networks for Short Term Delay Prediction

The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with some latency caused by periodical data transmission and temporal problems preventing data transmission. This negatively affects identificatio...

Full description

Saved in:
Bibliographic Details
Main Authors Grzenda, Maciej, Kwasiborska, Karolina, Zaremba, Tomasz
Format Journal Article
LanguageEnglish
Published 16.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with some latency caused by periodical data transmission and temporal problems preventing data transmission. This negatively affects identification of delayed vehicles. The primary objective of the work is to propose short term hybrid delay prediction method. The method relies on adaptive selection of Hoeffding trees, being stream classification technique and multilayer perceptrons. In this way, the hybrid method proposed in this study provides anytime predictions and eliminates the need to collect extensive training data before any predictions can be made. Moreover, the use of neural networks increases the accuracy of the predictions compared with the use of Hoeffding trees only.
AbstractList The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with some latency caused by periodical data transmission and temporal problems preventing data transmission. This negatively affects identification of delayed vehicles. The primary objective of the work is to propose short term hybrid delay prediction method. The method relies on adaptive selection of Hoeffding trees, being stream classification technique and multilayer perceptrons. In this way, the hybrid method proposed in this study provides anytime predictions and eliminates the need to collect extensive training data before any predictions can be made. Moreover, the use of neural networks increases the accuracy of the predictions compared with the use of Hoeffding trees only.
Author Zaremba, Tomasz
Grzenda, Maciej
Kwasiborska, Karolina
Author_xml – sequence: 1
  givenname: Maciej
  surname: Grzenda
  fullname: Grzenda, Maciej
– sequence: 2
  givenname: Karolina
  surname: Kwasiborska
  fullname: Kwasiborska, Karolina
– sequence: 3
  givenname: Tomasz
  surname: Zaremba
  fullname: Zaremba, Tomasz
BackLink https://doi.org/10.48550/arXiv.1706.05433$$DView paper in arXiv
BookMark eNotj8lOwzAUAH2AAxQ-gBP-gQS7tmP3iMJWURbR3qMX-wUsEhu9hqV_T2k5jeYy0hyzg5QTMnYmRamdMeIC6Cd-ldKKqhRGK3XE7us8tDHF9MqXIyEM_GFvkAJ_xE-CfovxO9P7mneZ-PIt08hXSAO_wh42_JkwRD_GnE7YYQf9Gk__OWEvN9er-q5YPN3O68tFAZVVhRUzh77t2sqClRo9GOtc5zvZulkwAf3UBR2kMVuTzgZRWaOlmkqL6NSEne-ju5fmg-IAtGn-nprdk_oFilBInQ
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.1706.05433
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1706_05433
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a673-7098ecbfb67a714eca5788fcf1b89d5dec28d4d1559d5187d0675413217ee83
IEDL.DBID GOX
IngestDate Mon Jan 08 05:37:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a673-7098ecbfb67a714eca5788fcf1b89d5dec28d4d1559d5187d0675413217ee83
OpenAccessLink https://arxiv.org/abs/1706.05433
ParticipantIDs arxiv_primary_1706_05433
PublicationCentury 2000
PublicationDate 2017-06-16
PublicationDateYYYYMMDD 2017-06-16
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-16
  day: 16
PublicationDecade 2010
PublicationYear 2017
Score 1.6698848
SecondaryResourceType preprint
Snippet The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Networking and Internet Architecture
Title Combining Stream Mining and Neural Networks for Short Term Delay Prediction
URI https://arxiv.org/abs/1706.05433
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQCFB5ygNrIE8_RgSUCtSCoEjZIju2BRKUKi0I_j13ThAsjI4vQ86yv8-5u-8AjkVuvfKkAMALH-W1dpESoQo4czqOPUIS_dCfTPn4Mb8ui7IH7KcWRjefzx-tPrBZnpK2ywmSiizrQz9NKWXr6rZsg5NBiquz_7VDjhke_QGJ0Qasd-yOnbXLsQk9N9-CG9xzJvRhYBQD1q9s0o7wEs9IHAPfmLbZ2EuGHJI9PCEnZjM8M9mFe9Ff7K6hcAq5cBvuR5ez83HU9TCINBdZJGIlXW284UKLJHe1xh0ife0TI5UtrKtTaXNLsUFbJFJYIvCIK3hRcE5mOzCYv83dEJgysUbzRHie4tmWUMWp1pbnxiuuErcLw_Dd1aIVqajIJVVwyd7_U_uwlhJMUS8efgCDVfPuDhFkV-YoePob15R78A
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Stream+Mining+and+Neural+Networks+for+Short+Term+Delay+Prediction&rft.au=Grzenda%2C+Maciej&rft.au=Kwasiborska%2C+Karolina&rft.au=Zaremba%2C+Tomasz&rft.date=2017-06-16&rft_id=info:doi/10.48550%2Farxiv.1706.05433&rft.externalDocID=1706_05433