Decay of aftershock density with distance does not indicate triggering by dynamic stress
Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic trig...
Saved in:
Published in | Nature (London) Vol. 467; no. 7315; pp. 583 - 586 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.09.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Static triggering of aftershocks
The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic triggering. Keith Richards-Dinger and colleagues have tested this hypothesis and conclude that the observed decay can be better explained by static triggering.
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. It has recently been argued that the decay of aftershocks with distance from the main earthquake could be explained only by dynamic triggering. This hypothesis has now been tested, the conclusion being that the observed decay can be better explained by static triggering.
Resolving whether static
1
,
2
,
3
or dynamic
4
,
5
,
6
,
7
,
8
stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard
9
. Felzer and Brodsky
10
examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤
M
< 3 and 3 ≤
M
< 4 mainshocks and found that their magnitude
M
≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤
M
< 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky
10
implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. |
---|---|
AbstractList | Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic triggering. Keith Richards-Dinger and colleagues have tested this hypothesis and conclude that the observed decay can be better explained by static triggering. Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. It has recently been argued that the decay of aftershocks with distance from the main earthquake could be explained only by dynamic triggering. This hypothesis has now been tested, the conclusion being that the observed decay can be better explained by static triggering. Resolving whether static 1 , 2 , 3 or dynamic 4 , 5 , 6 , 7 , 8 stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard 9 . Felzer and Brodsky 10 examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky 10 implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 less than or equal to M<3 and 3 less than or equal to M<4 mainshocks and found that their magnitude M greater than or equal to 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300m from the 2 less than or equal to M<3 mainshocks, the seismicity decay 5min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. Resolving whether static (1-3) or dynamic (4-8) stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard (9). Felzer and Brodsky (10) examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M ≤ 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky (10) implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2≤M<3 and 3≤M<4 mainshocks and found that their magnitude M≥2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2≤M<3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. [PUBLICATION ABSTRACT] Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. |
Audience | Academic |
Author | Richards-Dinger, Keith Stein, Ross S. Toda, Shinji |
Author_xml | – sequence: 1 givenname: Keith surname: Richards-Dinger fullname: Richards-Dinger, Keith email: keithrd@ucr.edu organization: Department of Earth Sciences, University of California – sequence: 2 givenname: Ross S. surname: Stein fullname: Stein, Ross S. organization: US Geological Survey – sequence: 3 givenname: Shinji surname: Toda fullname: Toda, Shinji organization: Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23248357$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20882015$$D View this record in MEDLINE/PubMed |
BookMark | eNqF01tv0zAUAOAIDbFu8MQ7soYQIMjwJbGdx6rcJk0gwRC8WY4vmUfqdLYr6L_HVTu6ogDKg6Xo8_HxOcdHxYEfvCmKhwieIkj4Ky_TMhjYVBDfKSaoYrSsKGcHxQRCzEvICT0sjmK8ghDWiFX3ikMMOccQ1ZPi22uj5AoMFkibTIiXg_oOtPHRpRX44dIl0C4m6ZUBejAR-CEB57VTMhmQgus6E5zvQLsCeuXl3CkQUzAx3i_uWtlH82C7Hhdf3r65mL0vzz--O5tNz0tJGU6lbklFjbSMYaYbqyymjDWa1pq1nCumaQMr1mJCEK1aYnHTkJYbpCy3WDFIjounm7iLMFwvTUxi7qIyfS-9GZZRcJ4LgzBj_5WspiRXjKzls39KxGpS50zqJtOTP-jVsAw-31gwmnPmlFYZPd6gTvZGOG-HFKRaxxRTTDirUVORrMoR1Rlvguxzy63Lv_f8yYhXC3ctbqPTEZQ_bXKvRqM-39uQTTI_UyeXMYqzz5_27Yu_2-nF19mHff1oW6plOzdaLIKby7ASN8OYwZMtkFHJ3oY8di7uHMEVJ_W6PWjjVBhiDMYK5ZJMLp8epOsFgmL9MMSth7FL9feem7Dj-uVGx8V6uk3YdXWM_wKc9BgW |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1093_gji_ggu085 crossref_primary_10_1038_s43247_024_01460_1 crossref_primary_10_1134_S1069351321040029 crossref_primary_10_5194_npg_21_427_2014 crossref_primary_10_1007_s00024_016_1368_y crossref_primary_10_1016_j_epsl_2013_06_044 crossref_primary_10_1016_j_epsl_2015_06_044 crossref_primary_10_1038_ngeo2653 crossref_primary_10_1038_srep15560 crossref_primary_10_1029_2021RG000769 crossref_primary_10_1016_j_tecto_2016_08_008 crossref_primary_10_1029_2017JB014781 crossref_primary_10_1126_science_aag0013 crossref_primary_10_1029_2012JB009486 crossref_primary_10_1002_2016JB013706 crossref_primary_10_1785_0220200021 crossref_primary_10_1785_0220200384 crossref_primary_10_1029_2021JB023589 crossref_primary_10_1016_j_tecto_2014_11_015 crossref_primary_10_1002_2017JB015165 crossref_primary_10_1029_2021JB022454 crossref_primary_10_35540_2686_7907_2020_3_03 crossref_primary_10_1093_gji_ggv445 crossref_primary_10_1002_2014GL061975 crossref_primary_10_1016_j_physa_2017_02_033 crossref_primary_10_1111_j_1365_246X_2011_05343_x crossref_primary_10_1002_2013JB010385 crossref_primary_10_1140_epjb_e2013_40762_2 crossref_primary_10_1029_2011GL047253 crossref_primary_10_1186_s40623_017_0598_2 crossref_primary_10_1002_2013GL058744 crossref_primary_10_1029_2022JB025975 crossref_primary_10_1785_0120170295 crossref_primary_10_1785_0220220264 crossref_primary_10_1029_2011GL049795 crossref_primary_10_1073_pnas_1208799109 crossref_primary_10_1126_sciadv_abh0894 crossref_primary_10_1155_2021_9400276 crossref_primary_10_1002_jgrb_50271 crossref_primary_10_1126_sciadv_ado2191 crossref_primary_10_1785_0220210174 crossref_primary_10_1038_ngeo1141 crossref_primary_10_1002_2017JB014841 crossref_primary_10_3390_e21040421 crossref_primary_10_1002_jgrb_50306 crossref_primary_10_1029_2010JB007473 crossref_primary_10_1007_s10712_022_09698_0 crossref_primary_10_26443_seismica_v3i2_1094 crossref_primary_10_1038_srep00846 crossref_primary_10_1029_2011GL047863 crossref_primary_10_1002_2014JB011788 crossref_primary_10_1093_gji_ggt523 crossref_primary_10_1029_2017JB015136 crossref_primary_10_1029_2011JB008957 crossref_primary_10_1038_s41586_019_1582_8 crossref_primary_10_1126_science_aax2490 crossref_primary_10_1029_2023JB027680 crossref_primary_10_4294_zisin_69_99 crossref_primary_10_1007_s00024_015_1062_5 crossref_primary_10_1155_2019_8147345 crossref_primary_10_5194_npg_25_241_2018 crossref_primary_10_1186_s40623_020_01272_5 crossref_primary_10_1016_j_physrep_2016_03_002 crossref_primary_10_1146_annurev_earth_040522_102129 crossref_primary_10_1029_2012JB009471 crossref_primary_10_1038_s41561_021_00888_w crossref_primary_10_1007_s00024_017_1502_5 crossref_primary_10_1002_2016GL069955 crossref_primary_10_1186_s40623_016_0558_2 crossref_primary_10_1029_2010JB008114 crossref_primary_10_1186_s40623_022_01677_4 crossref_primary_10_1002_2016GL071104 crossref_primary_10_1785_0320220023 crossref_primary_10_1103_PhysRevE_89_042204 crossref_primary_10_1002_2014JB010940 crossref_primary_10_1016_j_tecto_2022_229445 |
Cites_doi | 10.1029/2001JB000646 10.1029/2004JB003286 10.1785/BSSA0730010265 10.1029/2001JB000678 10.01029/02004JB003211 10.1029/98JB00573 10.1029/2004JB003389 10.1785/0120040007 10.01029/02006JB004890 10.1029/95JB02397 10.01029/02006JB004596 10.1029/2004JB003415 10.1038/ngeo204 10.1029/95JB00860 10.1785/0119990114 10.01029/02005JB004034 10.1126/science.260.5114.1617 10.1038/ngeo697 10.1038/nature04799 10.1785/0120020229 10.1126/science.1103961 10.1029/2000GL011534 10.1785/BSSA0840040974 10.1126/science.1148783 10.1038/nature00997 10.1038/45144 10.1146/annurev.earth.33.092203.122505 10.1029/2001JB001580 10.1038/437830a 10.1016/B978-044452748-6.00070-5 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2010 2015 INIST-CNRS COPYRIGHT 2010 Nature Publishing Group Copyright Nature Publishing Group Sep 30, 2010 |
Copyright_xml | – notice: Springer Nature Limited 2010 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 30, 2010 |
DBID | AAYXX CITATION IQODW NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7SC 7SM 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
DOI | 10.1038/nature09402 |
DatabaseName | CrossRef Pascal-Francis PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Computer and Information Systems Abstracts Earthquake Engineering Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Earthquake Engineering Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Agricultural Science Database Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 586 |
ExternalDocumentID | 2184110671 A238751943 20882015 23248357 10_1038_nature09402 |
Genre | Journal Article |
GeographicLocations | United States Japan Southern California United States--US |
GeographicLocations_xml | – name: Japan – name: United States – name: Southern California – name: United States--US |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .HR .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3O- 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT .GJ 08P 1CY 1VW 354 3EH 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFHIU AFHKK AHWEU AIXLP AJUXI BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZGI ZHY ZY4 NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7SC 7SM 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a672t-db346eaf7727d9fcf26779d65d7b88c7d69047b233164b3f2993b8e1cf8f2c703 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 05:03:26 EDT 2025 Fri Jul 11 05:36:04 EDT 2025 Fri Jul 11 15:40:55 EDT 2025 Fri Jul 25 09:01:34 EDT 2025 Tue Jun 17 22:07:44 EDT 2025 Fri Jun 13 00:16:49 EDT 2025 Tue Jun 10 15:37:01 EDT 2025 Tue Jun 10 21:07:13 EDT 2025 Fri Jun 27 05:29:31 EDT 2025 Fri Jun 27 05:47:53 EDT 2025 Mon Jul 21 06:03:04 EDT 2025 Mon Jul 21 09:16:30 EDT 2025 Tue Jul 01 02:00:24 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Fri Feb 21 02:37:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7315 |
Keywords | stress density aftershocks magnitude mainshocks earthquakes seismic risk seismicity |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a672t-db346eaf7727d9fcf26779d65d7b88c7d69047b233164b3f2993b8e1cf8f2c703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20882015 |
PQID | 763168664 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_889401277 proquest_miscellaneous_756300237 proquest_miscellaneous_1753529959 proquest_journals_763168664 gale_infotracmisc_A238751943 gale_infotracgeneralonefile_A238751943 gale_infotraccpiq_238751943 gale_infotracacademiconefile_A238751943 gale_incontextgauss_ISR_A238751943 gale_incontextgauss_ATWCN_A238751943 pubmed_primary_20882015 pascalfrancis_primary_23248357 crossref_citationtrail_10_1038_nature09402 crossref_primary_10_1038_nature09402 springer_journals_10_1038_nature09402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100930 |
PublicationDateYYYYMMDD | 2010-09-30 |
PublicationDate_xml | – month: 9 year: 2010 text: 20100930 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Marsan, Lengliné (CR22) 2008; 319 Stein (CR1) 1999; 402 Miyazawa, Brodsky (CR17) 2008; 113 Felzer, Abercrombie, Ekström (CR30) 2003; 93 Cochran, Vidale, Tanaka (CR14) 2004; 306 Brodsky, Karakostas, Kanamori (CR15) 2000; 27 Velasco, Hernandez, Parsons, Pankow (CR16) 2008; 1 Wells, Coppersmith (CR19) 1994; 84 Toda, Stein, Richards-Dinger, Bozkurt (CR2) 2005; 110 Freed (CR9) 2005; 33 CR12 CR32 Helmstetter, Kagan, Jackson (CR13) 2005; 110 Hill, Johnston, Langbein, Bilham (CR23) 1995; 100 CR3 CR5 Felzer, Brodsky (CR10) 2006; 441 Abercrombie (CR21) 1995; 100 Hardebeck, Nazareth, Hauksson (CR11) 1998; 103 Wiemer, Wyss (CR28) 2000; 90 Hill (CR4) 1993; 260 Brodsky, Prejean (CR6) 2005; 110 Felzer, Abercrombie, Ekström (CR20) 2003; 93 Vidale, Shearer (CR25) 2006; 111 Jennings, Kanamori (CR18) 1983; 73 Lohman, McGuire (CR26) 2007; 112 Woessner, Wiemer (CR27) 2005; 95 Helmstetter, Sornette (CR29) 2002; 107 Kendall, Stuart (CR31) 1969 Gomberg, Johnson (CR7) 2005; 437 Hill, Prejean (CR8) 2007 Toda, Stein, Sagiya (CR24) 2002; 419 BFnature09402_CR12 D Marsan (BFnature09402_CR22) 2008; 319 DP Hill (BFnature09402_CR4) 1993; 260 E Brodsky (BFnature09402_CR15) 2000; 27 BFnature09402_CR32 JL Hardebeck (BFnature09402_CR11) 1998; 103 ES Cochran (BFnature09402_CR14) 2004; 306 M Kendall (BFnature09402_CR31) 1969 EE Brodsky (BFnature09402_CR6) 2005; 110 S Toda (BFnature09402_CR24) 2002; 419 J Woessner (BFnature09402_CR27) 2005; 95 K Felzer (BFnature09402_CR30) 2003; 93 KR Felzer (BFnature09402_CR10) 2006; 441 DP Hill (BFnature09402_CR23) 1995; 100 AA Velasco (BFnature09402_CR16) 2008; 1 BFnature09402_CR3 M Miyazawa (BFnature09402_CR17) 2008; 113 RS Stein (BFnature09402_CR1) 1999; 402 BFnature09402_CR5 J Gomberg (BFnature09402_CR7) 2005; 437 S Toda (BFnature09402_CR2) 2005; 110 PC Jennings (BFnature09402_CR18) 1983; 73 AM Freed (BFnature09402_CR9) 2005; 33 A Helmstetter (BFnature09402_CR13) 2005; 110 S Wiemer (BFnature09402_CR28) 2000; 90 RE Abercrombie (BFnature09402_CR21) 1995; 100 DL Wells (BFnature09402_CR19) 1994; 84 KR Felzer (BFnature09402_CR20) 2003; 93 RB Lohman (BFnature09402_CR26) 2007; 112 JE Vidale (BFnature09402_CR25) 2006; 111 DP Hill (BFnature09402_CR8) 2007 A Helmstetter (BFnature09402_CR29) 2002; 107 12214230 - Nature. 2002 Sep 5;419(6902):58-61 18292339 - Science. 2008 Feb 22;319(5866):1076-9 16208360 - Nature. 2005 Oct 6;437(7060):830 17810202 - Science. 1993 Jun 11;260(5114):1617-23 16760974 - Nature. 2006 Jun 8;441(7094):735-8 15498971 - Science. 2004 Nov 12;306(5699):1164-6 |
References_xml | – volume: 419 start-page: 58 year: 2002 end-page: 61 ident: CR24 article-title: Evidence from the A.D. 2000 Izu Islands swarm that seismicity is governed by stressing rate publication-title: Nature – volume: 111 start-page: B05312 year: 2006 ident: CR25 article-title: A survey of 71 earthquake bursts across southern California: exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers publication-title: J. Geophys. Res. – volume: 84 start-page: 974 year: 1994 end-page: 1002 ident: CR19 article-title: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement publication-title: Bull. Seismol. Soc. Am. – volume: 100 start-page: 24015 year: 1995 end-page: 24036 ident: CR21 article-title: Earthquake source scaling relationships from -1 to 5 m using seismograms recorded at 2.5-km depth publication-title: J. Geophys. Res. – volume: 306 start-page: 1164 year: 2004 end-page: 1166 ident: CR14 article-title: Earth tides can trigger shallow thrust fault earthquakes publication-title: Science – year: 1969 ident: CR31 publication-title: The Advanced Theory of Statistics – volume: 402 start-page: 605 year: 1999 end-page: 609 ident: CR1 article-title: The role of stress transfer in earthquake occurrence publication-title: Nature – ident: CR12 – volume: 437 start-page: 830 year: 2005 ident: CR7 article-title: Dynamic triggering of earthquakes publication-title: Nature – volume: 103 start-page: 24427 year: 1998 end-page: 24437 ident: CR11 article-title: The static stress change triggering model: constraints from two southern California aftershocks sequences publication-title: J. Geophys. Res. – volume: 33 start-page: 335 year: 2005 end-page: 367 ident: CR9 article-title: Earthquake triggering by static, dynamic, and postseismic stress transfer publication-title: Annu. Rev. Earth Planet. Sci. – volume: 95 start-page: 684 year: 2005 end-page: 698 ident: CR27 article-title: Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty publication-title: Bull. Seismol. Soc. Am. – volume: 319 start-page: 1076 year: 2008 end-page: 1079 ident: CR22 article-title: Extending earthquakes’ reach through cascading publication-title: Science – volume: 90 start-page: 859 year: 2000 end-page: 869 ident: CR28 article-title: Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan publication-title: Bull. Seismol. Soc. Am. – volume: 107 start-page: 2237 year: 2002 ident: CR29 article-title: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks publication-title: J. Geophys. Res. – volume: 110 start-page: B05S08 year: 2005 ident: CR13 article-title: Importance of small earthquakes for stress transfers and earthquake triggering publication-title: J. Geophys. Res. – volume: 1 start-page: 375 year: 2008 end-page: 379 ident: CR16 article-title: Global ubiquity of dynamic earthquake triggering publication-title: Nature Geosci. – start-page: 257 year: 2007 end-page: 291 ident: CR8 publication-title: Treatise on Geophsyics – volume: 100 start-page: 12985 year: 1995 end-page: 13005 ident: CR23 article-title: Response of Long Valley caldera to the Mw = 7.3 Landers, California, earthquake publication-title: J. Geophys. Res. – ident: CR3 – volume: 27 start-page: 2741 year: 2000 end-page: 2744 ident: CR15 article-title: A new observation of dynamically triggered regional seismicity: Earthquakes in Greece following the August, 1999 Izmit, Turkey earthquake publication-title: Geophys. Res. Lett. – volume: 260 start-page: 1617 year: 1993 end-page: 1623 ident: CR4 article-title: Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake publication-title: Science – ident: CR32 – volume: 110 start-page: B04302 year: 2005 ident: CR6 article-title: New constraints on mechanisms of remotely triggered seismicity at long valley caldera publication-title: J. Geophys. Res. – volume: 113 start-page: B01307 year: 2008 ident: CR17 article-title: Deep low-frequency tremor that correlates with passing surface waves publication-title: J. Geophys. Res. – ident: CR5 – volume: 110 start-page: B05S16 year: 2005 ident: CR2 article-title: Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer publication-title: J. Geophys. Res. – volume: 112 start-page: B04405 year: 2007 ident: CR26 article-title: Earthquake swarms driven by aseismic creep in the Salton trough, California publication-title: J. Geophys. Res. – volume: 93 start-page: 1433 year: 2003 end-page: 1448 ident: CR20 article-title: Secondary aftershocks and their importance for aftershock forecasting publication-title: Bull. Seismol. Soc. Am. – volume: 73 start-page: 265 year: 1983 end-page: 280 ident: CR18 article-title: Effect of distance on local magnitudes found from strong-motion records publication-title: Bull. Seismol. Soc. Am. – volume: 93 start-page: 1433 year: 2003 end-page: 1448 ident: CR30 article-title: Secondary aftershocks and their importance for aftershock forecasting publication-title: Bull. Seismol. Soc. Am. – volume: 441 start-page: 735 year: 2006 end-page: 738 ident: CR10 article-title: Decay of aftershock density with distance indicates triggering by dynamic stress publication-title: Nature – ident: BFnature09402_CR3 doi: 10.1029/2001JB000646 – volume: 110 start-page: B05S08 year: 2005 ident: BFnature09402_CR13 publication-title: J. Geophys. Res. doi: 10.1029/2004JB003286 – volume: 73 start-page: 265 year: 1983 ident: BFnature09402_CR18 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0730010265 – ident: BFnature09402_CR5 doi: 10.1029/2001JB000678 – volume: 110 start-page: B04302 year: 2005 ident: BFnature09402_CR6 publication-title: J. Geophys. Res. doi: 10.01029/02004JB003211 – volume: 103 start-page: 24427 year: 1998 ident: BFnature09402_CR11 publication-title: J. Geophys. Res. doi: 10.1029/98JB00573 – ident: BFnature09402_CR12 doi: 10.1029/2004JB003389 – volume: 95 start-page: 684 year: 2005 ident: BFnature09402_CR27 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120040007 – volume: 113 start-page: B01307 year: 2008 ident: BFnature09402_CR17 publication-title: J. Geophys. Res. doi: 10.01029/02006JB004890 – volume: 100 start-page: 24015 year: 1995 ident: BFnature09402_CR21 publication-title: J. Geophys. Res. doi: 10.1029/95JB02397 – volume: 112 start-page: B04405 year: 2007 ident: BFnature09402_CR26 publication-title: J. Geophys. Res. doi: 10.01029/02006JB004596 – volume: 110 start-page: B05S16 year: 2005 ident: BFnature09402_CR2 publication-title: J. Geophys. Res. doi: 10.1029/2004JB003415 – volume: 1 start-page: 375 year: 2008 ident: BFnature09402_CR16 publication-title: Nature Geosci. doi: 10.1038/ngeo204 – volume: 100 start-page: 12985 year: 1995 ident: BFnature09402_CR23 publication-title: J. Geophys. Res. doi: 10.1029/95JB00860 – volume: 90 start-page: 859 year: 2000 ident: BFnature09402_CR28 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0119990114 – volume: 111 start-page: B05312 year: 2006 ident: BFnature09402_CR25 publication-title: J. Geophys. Res. doi: 10.01029/02005JB004034 – volume: 260 start-page: 1617 year: 1993 ident: BFnature09402_CR4 publication-title: Science doi: 10.1126/science.260.5114.1617 – ident: BFnature09402_CR32 doi: 10.1038/ngeo697 – volume: 441 start-page: 735 year: 2006 ident: BFnature09402_CR10 publication-title: Nature doi: 10.1038/nature04799 – volume: 93 start-page: 1433 year: 2003 ident: BFnature09402_CR20 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120020229 – volume: 306 start-page: 1164 year: 2004 ident: BFnature09402_CR14 publication-title: Science doi: 10.1126/science.1103961 – volume: 27 start-page: 2741 year: 2000 ident: BFnature09402_CR15 publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL011534 – volume: 93 start-page: 1433 year: 2003 ident: BFnature09402_CR30 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/0120020229 – volume: 84 start-page: 974 year: 1994 ident: BFnature09402_CR19 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0840040974 – volume: 319 start-page: 1076 year: 2008 ident: BFnature09402_CR22 publication-title: Science doi: 10.1126/science.1148783 – volume: 419 start-page: 58 year: 2002 ident: BFnature09402_CR24 publication-title: Nature doi: 10.1038/nature00997 – volume: 402 start-page: 605 year: 1999 ident: BFnature09402_CR1 publication-title: Nature doi: 10.1038/45144 – volume: 33 start-page: 335 year: 2005 ident: BFnature09402_CR9 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.33.092203.122505 – volume: 107 start-page: 2237 year: 2002 ident: BFnature09402_CR29 publication-title: J. Geophys. Res. doi: 10.1029/2001JB001580 – volume: 437 start-page: 830 year: 2005 ident: BFnature09402_CR7 publication-title: Nature doi: 10.1038/437830a – start-page: 257 volume-title: Treatise on Geophsyics year: 2007 ident: BFnature09402_CR8 doi: 10.1016/B978-044452748-6.00070-5 – volume-title: The Advanced Theory of Statistics year: 1969 ident: BFnature09402_CR31 – reference: 16208360 - Nature. 2005 Oct 6;437(7060):830 – reference: 18292339 - Science. 2008 Feb 22;319(5866):1076-9 – reference: 17810202 - Science. 1993 Jun 11;260(5114):1617-23 – reference: 15498971 - Science. 2004 Nov 12;306(5699):1164-6 – reference: 16760974 - Nature. 2006 Jun 8;441(7094):735-8 – reference: 12214230 - Nature. 2002 Sep 5;419(6902):58-61 |
SSID | ssj0005174 |
Score | 2.324023 |
Snippet | Static triggering of aftershocks
The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was... Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to... Resolving whether static (1-3) or dynamic (4-8) stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 583 |
SubjectTerms | 704/2151/210 704/2151/508 Decay Density Dynamics Earth sciences Earth, ocean, space Earthquakes Earthquakes, seismology Exact sciences and technology Faults Humanities and Social Sciences Internal geophysics Japan letter multidisciplinary Properties Science Science (multidisciplinary) Seismic activity Seismic engineering Seismic hazard Seismic phenomena Seismic waves Strains and stresses Stress relaxation (Materials) Stress relieving (Materials) Stresses Tectonics. Structural geology. Plate tectonics Temporal logic United States |
Title | Decay of aftershock density with distance does not indicate triggering by dynamic stress |
URI | https://link.springer.com/article/10.1038/nature09402 https://www.ncbi.nlm.nih.gov/pubmed/20882015 https://www.proquest.com/docview/763168664 https://www.proquest.com/docview/1753529959 https://www.proquest.com/docview/756300237 https://www.proquest.com/docview/889401277 |
Volume | 467 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8hY7KoPEpRWsSN3afUCkrA4kKjU30zXL8UZBQ0pH0of89d4nbLtDykhdfEucud_7ZPv-OkGNAQpHjdhAm8QAmKIr3QqGNCllsOc_iiKkEzw5_maRnl-zztD_1uTmlT6tcxcQ6UJtC4xr5CfhBlIo0Ze_mVyEWjcLNVV9B4ybZR-YyzOjiU77J8PiLhNkfz-sl4qRhzUTuuLg1IPmwfGeuSlCRa2pbbAOf_2yc1uPR-B6564EkHTaWPyA3bH5IbtUJnbo8JAfeaUv62jNLv7lPph-sVktaOFqXBi9_QDCkBlPYqyXFFVlqEE7CbdQUcGteVBT3tDFrilagjVlNXEizJTVNJXvanDV5QC7Hpxejs9CXVghVyuMqNFnCUqscYGtuBk67OOV8YNK-4ZkQmhuYNDOwVQJKZ1niYNBKMmEj7YSLNUSJh2QvL3L7mNCe7Qut-ji1AXQD8VPFzEYJY_AGYTMekLcr_Urtecex_MUvWe9_J0JeM0ZAjtfC84ZuY4cYGkoigUWOGTIztShLObz4PprIIaAQDsCUJQF5vk3s07fzltArL-QK6JdW_lwCfB1SY7UkOy1JPf95Ja-1vmy1zhrjbnvMUUsQ_Fm3mrutv2-tB8S-gJdBoZ3V7yh9wCnl2j0C8mzdik_GHLrcFotSIidrP0Z-uYDQHTIc6eIAxvHdIkKABaKYg8ijxhc2PcT5GuDLgLxYOcemh1vM-OS_X9Iht5tUDUzOOSJ71e-FfQoIsMq6tZ_DVYwivI4_dsn--9PJ1_M_jt9bFQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-QscwaGOAFK1x0th9QKjamFq29QE60Tfj2E6ZBElHUqH-UfyP3OWjW6Dlbc--OM6d7_xzfP4dITuAhLyY267rsy5sUBRvu0Ib5QbMch4xL1A-3h0-HYb9s-DjuDNeI7_ruzCYVlnHxCJQm1TjP_J98AMvFGEYvJ9euFg0Cg9X6woa5aw4tvNfsGPL3g0Owby7jB19GB303aqogKtCznLXRH4QWhUDquSmG-uYhZx3TdgxPBJCcwPbxQBG6cPrgsiPIVz7kbCejkXMNPgH9HuD3IR1t40Oxcf8MqPkL9Ln6jpg2xf7JUsnctWxxgJYLQN3pyoDk8RlLY1lYPefg9pi_Tu6T-5VwJX2ypm2QdZsskluFQmkOtskG1WQyOjrisn6zQMyPrRazWka06IUefYNgi81mDKfzyn-AaYG4Ss8Rk0KjyZpTvEMHbO0aA7anxREiTSaUzNP1I9zTcu7LQ_J2bVo_RFZT9LEPiG0bTtCqw5upQBNQbxWLLCeHwTwBmEj7pC3tX6lrnjOsdzGd1mct_tCXjGGQ3YWwtOS3mOFGBpKImFGghk5EzXLMtkbfTkYyh6gHg5AOPAd8nKZ2ODzp4bQXiUUpzAurap7EPB1SMXVkGw1JPX0_EJeaX3VaJ2Uxl3WzVZDEOKHbjRvN2bfQg-ItQGfg0Jb9XSUVYDL5MIdHfJi0Yo9Y85eYtNZJpEDtsOQz84hdIUMR3o6gI18tYgQYAGPcRB5XPrC5Qhxfwh41iG7tXNcjnCJGZ_-90uek9v90emJPBkMj1vkTpkmgolBW2Q9_zmzzwB95tF24fOUfL3uIPMHxDiUXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEAgJITbeQscwaONlUtTGebH7AaFqpVoZVAg20W-Z4zhlEiQdSYX60_h33CVOu0DLt332xXHufOfH8fk5QvYACTkJ113bZV3YoEjesYWKpe0xzXnEHE-6eHf44yg4OvXej_3xBvld34XBtMo6JpaBOs4U_iNvgx84gQgCr52YrIhP_cHb6YWNBaTwoLWuplHNkGM9_wW7t_zNsA-m3mds8O7k8Mg2BQZsGXBW2HHkeoGWCSBMHncTlbCA824c-DGPhFA8hq2jByN24dVe5CYQut1IaEclImEKfAX6vUauc9d30MX4mC-zS_4igDZXAzuuaFeMnchbxxqLoVkSbk9lDuZJqroaq4DvP4e25Vo4uEvuGBBLe9Ws2yIbOt0mN8pkUpVvky0TMHL6yrBav75Hxn2t5JxmCS3LkuffIBDTGNPniznFv8E0RigLj9E4g0fTrKB4no4ZW7QA7U9K0kQazWk8T-WPc0Wrey73yemVaP0B2UyzVD8itKN9oaSP2ypAVhC7JfO043oevEHoiFvkoNZvqAznOZbe-B6WZ--uCC8ZwyJ7C-FpRfWxRgwNFSJ5RorzcCJneR72Tr4ejsIeICAOoNhzLfJ8ldjwy-eG0EsjlGQwLiXNnQj4OqTlaki2GpJqen4RXmp90WidVMZd1c1OQxBiiWo07zZm30IPiLsBq4NCW_V0DE2wy8OFa1rk2aIVe8b8vVRnszxEPlifIbedRegaGY5UdQAh-XoRIcACDuMg8rDyheUIca8I2NYi-7VzLEe4woyP__slT8lNCC_hh-HouEVuVRkjmCO0QzaLnzP9BIBoEe2WLk_J2VXHmD_wPZiT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+aftershock+density+with+distance+does+not+indicate+triggering+by+dynamic+stress&rft.jtitle=Nature+%28London%29&rft.au=Richards-Dinger%2C+Keith&rft.au=Stein%2C+Ross+S&rft.au=Toda%2C+Shinji&rft.date=2010-09-30&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=467&rft.issue=7315&rft.spage=583&rft_id=info:doi/10.1038%2Fnature09402&rft.externalDocID=A238751943 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |