Decay of aftershock density with distance does not indicate triggering by dynamic stress

Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic trig...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 467; no. 7315; pp. 583 - 586
Main Authors Richards-Dinger, Keith, Stein, Ross S., Toda, Shinji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.09.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic triggering. Keith Richards-Dinger and colleagues have tested this hypothesis and conclude that the observed decay can be better explained by static triggering. Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. It has recently been argued that the decay of aftershocks with distance from the main earthquake could be explained only by dynamic triggering. This hypothesis has now been tested, the conclusion being that the observed decay can be better explained by static triggering. Resolving whether static 1 , 2 , 3 or dynamic 4 , 5 , 6 , 7 , 8 stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard 9 . Felzer and Brodsky 10 examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤  M  < 3 and 3 ≤  M  < 4 mainshocks and found that their magnitude M  ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤  M  < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky 10 implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
AbstractList Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was recently argued — controversially — that the decay of aftershocks with distance from the main earthquake could only be explained by dynamic triggering. Keith Richards-Dinger and colleagues have tested this hypothesis and conclude that the observed decay can be better explained by static triggering. Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. It has recently been argued that the decay of aftershocks with distance from the main earthquake could be explained only by dynamic triggering. This hypothesis has now been tested, the conclusion being that the observed decay can be better explained by static triggering. Resolving whether static 1 , 2 , 3 or dynamic 4 , 5 , 6 , 7 , 8 stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard 9 . Felzer and Brodsky 10 examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤  M  < 3 and 3 ≤  M  < 4 mainshocks and found that their magnitude M  ≥ 2 aftershocks showed a uniform power-law decay with slope −1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤  M  < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky 10 implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 less than or equal to M<3 and 3 less than or equal to M<4 mainshocks and found that their magnitude M greater than or equal to 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300m from the 2 less than or equal to M<3 mainshocks, the seismicity decay 5min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Resolving whether static (1-3) or dynamic (4-8) stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard (9). Felzer and Brodsky (10) examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M ≤ 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky (10) implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2≤M<3 and 3≤M<4 mainshocks and found that their magnitude M≥2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2≤M<3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case. [PUBLICATION ABSTRACT]
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2 ≤ M < 3 and 3 ≤ M < 4 mainshocks and found that their magnitude M ≥ 2 aftershocks showed a uniform power-law decay with slope -1.35 out to 50 km from the mainshocks. From this they argued that the distance decay could be explained only by dynamic triggering. Here we propose an alternative explanation for the decay, and subject their hypothesis to a series of tests, none of which it passes. At distances more than 300 m from the 2 ≤ M < 3 mainshocks, the seismicity decay 5 min before the mainshocks is indistinguishable from the decay five minutes afterwards, indicating that the mainshocks have no effect at distances outside their static triggering range. Omori temporal decay, the fundamental signature of aftershocks, is absent at distances exceeding 10 km from the mainshocks. Finally, the distance decay is found among aftershocks that occur before the arrival of the seismic wave front from the mainshock, which violates causality. We argue that Felzer and Brodsky implicitly assume that the first of two independent aftershocks along a fault rupture triggers the second, and that the first of two shocks in a creep- or intrusion-driven swarm triggers the second, when this need not be the case.
Audience Academic
Author Richards-Dinger, Keith
Stein, Ross S.
Toda, Shinji
Author_xml – sequence: 1
  givenname: Keith
  surname: Richards-Dinger
  fullname: Richards-Dinger, Keith
  email: keithrd@ucr.edu
  organization: Department of Earth Sciences, University of California
– sequence: 2
  givenname: Ross S.
  surname: Stein
  fullname: Stein, Ross S.
  organization: US Geological Survey
– sequence: 3
  givenname: Shinji
  surname: Toda
  fullname: Toda, Shinji
  organization: Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23248357$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20882015$$D View this record in MEDLINE/PubMed
BookMark eNqF01tv0zAUAOAIDbFu8MQ7soYQIMjwJbGdx6rcJk0gwRC8WY4vmUfqdLYr6L_HVTu6ogDKg6Xo8_HxOcdHxYEfvCmKhwieIkj4Ky_TMhjYVBDfKSaoYrSsKGcHxQRCzEvICT0sjmK8ghDWiFX3ikMMOccQ1ZPi22uj5AoMFkibTIiXg_oOtPHRpRX44dIl0C4m6ZUBejAR-CEB57VTMhmQgus6E5zvQLsCeuXl3CkQUzAx3i_uWtlH82C7Hhdf3r65mL0vzz--O5tNz0tJGU6lbklFjbSMYaYbqyymjDWa1pq1nCumaQMr1mJCEK1aYnHTkJYbpCy3WDFIjounm7iLMFwvTUxi7qIyfS-9GZZRcJ4LgzBj_5WspiRXjKzls39KxGpS50zqJtOTP-jVsAw-31gwmnPmlFYZPd6gTvZGOG-HFKRaxxRTTDirUVORrMoR1Rlvguxzy63Lv_f8yYhXC3ctbqPTEZQ_bXKvRqM-39uQTTI_UyeXMYqzz5_27Yu_2-nF19mHff1oW6plOzdaLIKby7ASN8OYwZMtkFHJ3oY8di7uHMEVJ_W6PWjjVBhiDMYK5ZJMLp8epOsFgmL9MMSth7FL9feem7Dj-uVGx8V6uk3YdXWM_wKc9BgW
CODEN NATUAS
CitedBy_id crossref_primary_10_1093_gji_ggu085
crossref_primary_10_1038_s43247_024_01460_1
crossref_primary_10_1134_S1069351321040029
crossref_primary_10_5194_npg_21_427_2014
crossref_primary_10_1007_s00024_016_1368_y
crossref_primary_10_1016_j_epsl_2013_06_044
crossref_primary_10_1016_j_epsl_2015_06_044
crossref_primary_10_1038_ngeo2653
crossref_primary_10_1038_srep15560
crossref_primary_10_1029_2021RG000769
crossref_primary_10_1016_j_tecto_2016_08_008
crossref_primary_10_1029_2017JB014781
crossref_primary_10_1126_science_aag0013
crossref_primary_10_1029_2012JB009486
crossref_primary_10_1002_2016JB013706
crossref_primary_10_1785_0220200021
crossref_primary_10_1785_0220200384
crossref_primary_10_1029_2021JB023589
crossref_primary_10_1016_j_tecto_2014_11_015
crossref_primary_10_1002_2017JB015165
crossref_primary_10_1029_2021JB022454
crossref_primary_10_35540_2686_7907_2020_3_03
crossref_primary_10_1093_gji_ggv445
crossref_primary_10_1002_2014GL061975
crossref_primary_10_1016_j_physa_2017_02_033
crossref_primary_10_1111_j_1365_246X_2011_05343_x
crossref_primary_10_1002_2013JB010385
crossref_primary_10_1140_epjb_e2013_40762_2
crossref_primary_10_1029_2011GL047253
crossref_primary_10_1186_s40623_017_0598_2
crossref_primary_10_1002_2013GL058744
crossref_primary_10_1029_2022JB025975
crossref_primary_10_1785_0120170295
crossref_primary_10_1785_0220220264
crossref_primary_10_1029_2011GL049795
crossref_primary_10_1073_pnas_1208799109
crossref_primary_10_1126_sciadv_abh0894
crossref_primary_10_1155_2021_9400276
crossref_primary_10_1002_jgrb_50271
crossref_primary_10_1126_sciadv_ado2191
crossref_primary_10_1785_0220210174
crossref_primary_10_1038_ngeo1141
crossref_primary_10_1002_2017JB014841
crossref_primary_10_3390_e21040421
crossref_primary_10_1002_jgrb_50306
crossref_primary_10_1029_2010JB007473
crossref_primary_10_1007_s10712_022_09698_0
crossref_primary_10_26443_seismica_v3i2_1094
crossref_primary_10_1038_srep00846
crossref_primary_10_1029_2011GL047863
crossref_primary_10_1002_2014JB011788
crossref_primary_10_1093_gji_ggt523
crossref_primary_10_1029_2017JB015136
crossref_primary_10_1029_2011JB008957
crossref_primary_10_1038_s41586_019_1582_8
crossref_primary_10_1126_science_aax2490
crossref_primary_10_1029_2023JB027680
crossref_primary_10_4294_zisin_69_99
crossref_primary_10_1007_s00024_015_1062_5
crossref_primary_10_1155_2019_8147345
crossref_primary_10_5194_npg_25_241_2018
crossref_primary_10_1186_s40623_020_01272_5
crossref_primary_10_1016_j_physrep_2016_03_002
crossref_primary_10_1146_annurev_earth_040522_102129
crossref_primary_10_1029_2012JB009471
crossref_primary_10_1038_s41561_021_00888_w
crossref_primary_10_1007_s00024_017_1502_5
crossref_primary_10_1002_2016GL069955
crossref_primary_10_1186_s40623_016_0558_2
crossref_primary_10_1029_2010JB008114
crossref_primary_10_1186_s40623_022_01677_4
crossref_primary_10_1002_2016GL071104
crossref_primary_10_1785_0320220023
crossref_primary_10_1103_PhysRevE_89_042204
crossref_primary_10_1002_2014JB010940
crossref_primary_10_1016_j_tecto_2022_229445
Cites_doi 10.1029/2001JB000646
10.1029/2004JB003286
10.1785/BSSA0730010265
10.1029/2001JB000678
10.01029/02004JB003211
10.1029/98JB00573
10.1029/2004JB003389
10.1785/0120040007
10.01029/02006JB004890
10.1029/95JB02397
10.01029/02006JB004596
10.1029/2004JB003415
10.1038/ngeo204
10.1029/95JB00860
10.1785/0119990114
10.01029/02005JB004034
10.1126/science.260.5114.1617
10.1038/ngeo697
10.1038/nature04799
10.1785/0120020229
10.1126/science.1103961
10.1029/2000GL011534
10.1785/BSSA0840040974
10.1126/science.1148783
10.1038/nature00997
10.1038/45144
10.1146/annurev.earth.33.092203.122505
10.1029/2001JB001580
10.1038/437830a
10.1016/B978-044452748-6.00070-5
ContentType Journal Article
Copyright Springer Nature Limited 2010
2015 INIST-CNRS
COPYRIGHT 2010 Nature Publishing Group
Copyright Nature Publishing Group Sep 30, 2010
Copyright_xml – notice: Springer Nature Limited 2010
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 30, 2010
DBID AAYXX
CITATION
IQODW
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7SC
7SM
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
DOI 10.1038/nature09402
DatabaseName CrossRef
Pascal-Francis
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Computer and Information Systems Abstracts
Earthquake Engineering Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Earthquake Engineering Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

Agricultural Science Database
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 586
ExternalDocumentID 2184110671
A238751943
20882015
23248357
10_1038_nature09402
Genre Journal Article
GeographicLocations United States
Japan
Southern California
United States--US
GeographicLocations_xml – name: Japan
– name: United States
– name: Southern California
– name: United States--US
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.HR
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.GJ
08P
1CY
1VW
354
3EH
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZGI
ZHY
ZY4
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7SC
7SM
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a672t-db346eaf7727d9fcf26779d65d7b88c7d69047b233164b3f2993b8e1cf8f2c703
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 05:03:26 EDT 2025
Fri Jul 11 05:36:04 EDT 2025
Fri Jul 11 15:40:55 EDT 2025
Fri Jul 25 09:01:34 EDT 2025
Tue Jun 17 22:07:44 EDT 2025
Fri Jun 13 00:16:49 EDT 2025
Tue Jun 10 15:37:01 EDT 2025
Tue Jun 10 21:07:13 EDT 2025
Fri Jun 27 05:29:31 EDT 2025
Fri Jun 27 05:47:53 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Mon Jul 21 09:16:30 EDT 2025
Tue Jul 01 02:00:24 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Fri Feb 21 02:37:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7315
Keywords stress
density
aftershocks
magnitude
mainshocks
earthquakes
seismic risk
seismicity
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a672t-db346eaf7727d9fcf26779d65d7b88c7d69047b233164b3f2993b8e1cf8f2c703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20882015
PQID 763168664
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_889401277
proquest_miscellaneous_756300237
proquest_miscellaneous_1753529959
proquest_journals_763168664
gale_infotracmisc_A238751943
gale_infotracgeneralonefile_A238751943
gale_infotraccpiq_238751943
gale_infotracacademiconefile_A238751943
gale_incontextgauss_ISR_A238751943
gale_incontextgauss_ATWCN_A238751943
pubmed_primary_20882015
pascalfrancis_primary_23248357
crossref_citationtrail_10_1038_nature09402
crossref_primary_10_1038_nature09402
springer_journals_10_1038_nature09402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100930
PublicationDateYYYYMMDD 2010-09-30
PublicationDate_xml – month: 9
  year: 2010
  text: 20100930
  day: 30
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Marsan, Lengliné (CR22) 2008; 319
Stein (CR1) 1999; 402
Miyazawa, Brodsky (CR17) 2008; 113
Felzer, Abercrombie, Ekström (CR30) 2003; 93
Cochran, Vidale, Tanaka (CR14) 2004; 306
Brodsky, Karakostas, Kanamori (CR15) 2000; 27
Velasco, Hernandez, Parsons, Pankow (CR16) 2008; 1
Wells, Coppersmith (CR19) 1994; 84
Toda, Stein, Richards-Dinger, Bozkurt (CR2) 2005; 110
Freed (CR9) 2005; 33
CR12
CR32
Helmstetter, Kagan, Jackson (CR13) 2005; 110
Hill, Johnston, Langbein, Bilham (CR23) 1995; 100
CR3
CR5
Felzer, Brodsky (CR10) 2006; 441
Abercrombie (CR21) 1995; 100
Hardebeck, Nazareth, Hauksson (CR11) 1998; 103
Wiemer, Wyss (CR28) 2000; 90
Hill (CR4) 1993; 260
Brodsky, Prejean (CR6) 2005; 110
Felzer, Abercrombie, Ekström (CR20) 2003; 93
Vidale, Shearer (CR25) 2006; 111
Jennings, Kanamori (CR18) 1983; 73
Lohman, McGuire (CR26) 2007; 112
Woessner, Wiemer (CR27) 2005; 95
Helmstetter, Sornette (CR29) 2002; 107
Kendall, Stuart (CR31) 1969
Gomberg, Johnson (CR7) 2005; 437
Hill, Prejean (CR8) 2007
Toda, Stein, Sagiya (CR24) 2002; 419
BFnature09402_CR12
D Marsan (BFnature09402_CR22) 2008; 319
DP Hill (BFnature09402_CR4) 1993; 260
E Brodsky (BFnature09402_CR15) 2000; 27
BFnature09402_CR32
JL Hardebeck (BFnature09402_CR11) 1998; 103
ES Cochran (BFnature09402_CR14) 2004; 306
M Kendall (BFnature09402_CR31) 1969
EE Brodsky (BFnature09402_CR6) 2005; 110
S Toda (BFnature09402_CR24) 2002; 419
J Woessner (BFnature09402_CR27) 2005; 95
K Felzer (BFnature09402_CR30) 2003; 93
KR Felzer (BFnature09402_CR10) 2006; 441
DP Hill (BFnature09402_CR23) 1995; 100
AA Velasco (BFnature09402_CR16) 2008; 1
BFnature09402_CR3
M Miyazawa (BFnature09402_CR17) 2008; 113
RS Stein (BFnature09402_CR1) 1999; 402
BFnature09402_CR5
J Gomberg (BFnature09402_CR7) 2005; 437
S Toda (BFnature09402_CR2) 2005; 110
PC Jennings (BFnature09402_CR18) 1983; 73
AM Freed (BFnature09402_CR9) 2005; 33
A Helmstetter (BFnature09402_CR13) 2005; 110
S Wiemer (BFnature09402_CR28) 2000; 90
RE Abercrombie (BFnature09402_CR21) 1995; 100
DL Wells (BFnature09402_CR19) 1994; 84
KR Felzer (BFnature09402_CR20) 2003; 93
RB Lohman (BFnature09402_CR26) 2007; 112
JE Vidale (BFnature09402_CR25) 2006; 111
DP Hill (BFnature09402_CR8) 2007
A Helmstetter (BFnature09402_CR29) 2002; 107
12214230 - Nature. 2002 Sep 5;419(6902):58-61
18292339 - Science. 2008 Feb 22;319(5866):1076-9
16208360 - Nature. 2005 Oct 6;437(7060):830
17810202 - Science. 1993 Jun 11;260(5114):1617-23
16760974 - Nature. 2006 Jun 8;441(7094):735-8
15498971 - Science. 2004 Nov 12;306(5699):1164-6
References_xml – volume: 419
  start-page: 58
  year: 2002
  end-page: 61
  ident: CR24
  article-title: Evidence from the A.D. 2000 Izu Islands swarm that seismicity is governed by stressing rate
  publication-title: Nature
– volume: 111
  start-page: B05312
  year: 2006
  ident: CR25
  article-title: A survey of 71 earthquake bursts across southern California: exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers
  publication-title: J. Geophys. Res.
– volume: 84
  start-page: 974
  year: 1994
  end-page: 1002
  ident: CR19
  article-title: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement
  publication-title: Bull. Seismol. Soc. Am.
– volume: 100
  start-page: 24015
  year: 1995
  end-page: 24036
  ident: CR21
  article-title: Earthquake source scaling relationships from -1 to 5 m using seismograms recorded at 2.5-km depth
  publication-title: J. Geophys. Res.
– volume: 306
  start-page: 1164
  year: 2004
  end-page: 1166
  ident: CR14
  article-title: Earth tides can trigger shallow thrust fault earthquakes
  publication-title: Science
– year: 1969
  ident: CR31
  publication-title: The Advanced Theory of Statistics
– volume: 402
  start-page: 605
  year: 1999
  end-page: 609
  ident: CR1
  article-title: The role of stress transfer in earthquake occurrence
  publication-title: Nature
– ident: CR12
– volume: 437
  start-page: 830
  year: 2005
  ident: CR7
  article-title: Dynamic triggering of earthquakes
  publication-title: Nature
– volume: 103
  start-page: 24427
  year: 1998
  end-page: 24437
  ident: CR11
  article-title: The static stress change triggering model: constraints from two southern California aftershocks sequences
  publication-title: J. Geophys. Res.
– volume: 33
  start-page: 335
  year: 2005
  end-page: 367
  ident: CR9
  article-title: Earthquake triggering by static, dynamic, and postseismic stress transfer
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 95
  start-page: 684
  year: 2005
  end-page: 698
  ident: CR27
  article-title: Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty
  publication-title: Bull. Seismol. Soc. Am.
– volume: 319
  start-page: 1076
  year: 2008
  end-page: 1079
  ident: CR22
  article-title: Extending earthquakes’ reach through cascading
  publication-title: Science
– volume: 90
  start-page: 859
  year: 2000
  end-page: 869
  ident: CR28
  article-title: Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan
  publication-title: Bull. Seismol. Soc. Am.
– volume: 107
  start-page: 2237
  year: 2002
  ident: CR29
  article-title: Subcritical and supercritical regimes in epidemic models of earthquake aftershocks
  publication-title: J. Geophys. Res.
– volume: 110
  start-page: B05S08
  year: 2005
  ident: CR13
  article-title: Importance of small earthquakes for stress transfers and earthquake triggering
  publication-title: J. Geophys. Res.
– volume: 1
  start-page: 375
  year: 2008
  end-page: 379
  ident: CR16
  article-title: Global ubiquity of dynamic earthquake triggering
  publication-title: Nature Geosci.
– start-page: 257
  year: 2007
  end-page: 291
  ident: CR8
  publication-title: Treatise on Geophsyics
– volume: 100
  start-page: 12985
  year: 1995
  end-page: 13005
  ident: CR23
  article-title: Response of Long Valley caldera to the Mw = 7.3 Landers, California, earthquake
  publication-title: J. Geophys. Res.
– ident: CR3
– volume: 27
  start-page: 2741
  year: 2000
  end-page: 2744
  ident: CR15
  article-title: A new observation of dynamically triggered regional seismicity: Earthquakes in Greece following the August, 1999 Izmit, Turkey earthquake
  publication-title: Geophys. Res. Lett.
– volume: 260
  start-page: 1617
  year: 1993
  end-page: 1623
  ident: CR4
  article-title: Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake
  publication-title: Science
– ident: CR32
– volume: 110
  start-page: B04302
  year: 2005
  ident: CR6
  article-title: New constraints on mechanisms of remotely triggered seismicity at long valley caldera
  publication-title: J. Geophys. Res.
– volume: 113
  start-page: B01307
  year: 2008
  ident: CR17
  article-title: Deep low-frequency tremor that correlates with passing surface waves
  publication-title: J. Geophys. Res.
– ident: CR5
– volume: 110
  start-page: B05S16
  year: 2005
  ident: CR2
  article-title: Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer
  publication-title: J. Geophys. Res.
– volume: 112
  start-page: B04405
  year: 2007
  ident: CR26
  article-title: Earthquake swarms driven by aseismic creep in the Salton trough, California
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 1433
  year: 2003
  end-page: 1448
  ident: CR20
  article-title: Secondary aftershocks and their importance for aftershock forecasting
  publication-title: Bull. Seismol. Soc. Am.
– volume: 73
  start-page: 265
  year: 1983
  end-page: 280
  ident: CR18
  article-title: Effect of distance on local magnitudes found from strong-motion records
  publication-title: Bull. Seismol. Soc. Am.
– volume: 93
  start-page: 1433
  year: 2003
  end-page: 1448
  ident: CR30
  article-title: Secondary aftershocks and their importance for aftershock forecasting
  publication-title: Bull. Seismol. Soc. Am.
– volume: 441
  start-page: 735
  year: 2006
  end-page: 738
  ident: CR10
  article-title: Decay of aftershock density with distance indicates triggering by dynamic stress
  publication-title: Nature
– ident: BFnature09402_CR3
  doi: 10.1029/2001JB000646
– volume: 110
  start-page: B05S08
  year: 2005
  ident: BFnature09402_CR13
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JB003286
– volume: 73
  start-page: 265
  year: 1983
  ident: BFnature09402_CR18
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0730010265
– ident: BFnature09402_CR5
  doi: 10.1029/2001JB000678
– volume: 110
  start-page: B04302
  year: 2005
  ident: BFnature09402_CR6
  publication-title: J. Geophys. Res.
  doi: 10.01029/02004JB003211
– volume: 103
  start-page: 24427
  year: 1998
  ident: BFnature09402_CR11
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JB00573
– ident: BFnature09402_CR12
  doi: 10.1029/2004JB003389
– volume: 95
  start-page: 684
  year: 2005
  ident: BFnature09402_CR27
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120040007
– volume: 113
  start-page: B01307
  year: 2008
  ident: BFnature09402_CR17
  publication-title: J. Geophys. Res.
  doi: 10.01029/02006JB004890
– volume: 100
  start-page: 24015
  year: 1995
  ident: BFnature09402_CR21
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JB02397
– volume: 112
  start-page: B04405
  year: 2007
  ident: BFnature09402_CR26
  publication-title: J. Geophys. Res.
  doi: 10.01029/02006JB004596
– volume: 110
  start-page: B05S16
  year: 2005
  ident: BFnature09402_CR2
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JB003415
– volume: 1
  start-page: 375
  year: 2008
  ident: BFnature09402_CR16
  publication-title: Nature Geosci.
  doi: 10.1038/ngeo204
– volume: 100
  start-page: 12985
  year: 1995
  ident: BFnature09402_CR23
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JB00860
– volume: 90
  start-page: 859
  year: 2000
  ident: BFnature09402_CR28
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0119990114
– volume: 111
  start-page: B05312
  year: 2006
  ident: BFnature09402_CR25
  publication-title: J. Geophys. Res.
  doi: 10.01029/02005JB004034
– volume: 260
  start-page: 1617
  year: 1993
  ident: BFnature09402_CR4
  publication-title: Science
  doi: 10.1126/science.260.5114.1617
– ident: BFnature09402_CR32
  doi: 10.1038/ngeo697
– volume: 441
  start-page: 735
  year: 2006
  ident: BFnature09402_CR10
  publication-title: Nature
  doi: 10.1038/nature04799
– volume: 93
  start-page: 1433
  year: 2003
  ident: BFnature09402_CR20
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120020229
– volume: 306
  start-page: 1164
  year: 2004
  ident: BFnature09402_CR14
  publication-title: Science
  doi: 10.1126/science.1103961
– volume: 27
  start-page: 2741
  year: 2000
  ident: BFnature09402_CR15
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL011534
– volume: 93
  start-page: 1433
  year: 2003
  ident: BFnature09402_CR30
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120020229
– volume: 84
  start-page: 974
  year: 1994
  ident: BFnature09402_CR19
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0840040974
– volume: 319
  start-page: 1076
  year: 2008
  ident: BFnature09402_CR22
  publication-title: Science
  doi: 10.1126/science.1148783
– volume: 419
  start-page: 58
  year: 2002
  ident: BFnature09402_CR24
  publication-title: Nature
  doi: 10.1038/nature00997
– volume: 402
  start-page: 605
  year: 1999
  ident: BFnature09402_CR1
  publication-title: Nature
  doi: 10.1038/45144
– volume: 33
  start-page: 335
  year: 2005
  ident: BFnature09402_CR9
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.33.092203.122505
– volume: 107
  start-page: 2237
  year: 2002
  ident: BFnature09402_CR29
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JB001580
– volume: 437
  start-page: 830
  year: 2005
  ident: BFnature09402_CR7
  publication-title: Nature
  doi: 10.1038/437830a
– start-page: 257
  volume-title: Treatise on Geophsyics
  year: 2007
  ident: BFnature09402_CR8
  doi: 10.1016/B978-044452748-6.00070-5
– volume-title: The Advanced Theory of Statistics
  year: 1969
  ident: BFnature09402_CR31
– reference: 16208360 - Nature. 2005 Oct 6;437(7060):830
– reference: 18292339 - Science. 2008 Feb 22;319(5866):1076-9
– reference: 17810202 - Science. 1993 Jun 11;260(5114):1617-23
– reference: 15498971 - Science. 2004 Nov 12;306(5699):1164-6
– reference: 16760974 - Nature. 2006 Jun 8;441(7094):735-8
– reference: 12214230 - Nature. 2002 Sep 5;419(6902):58-61
SSID ssj0005174
Score 2.324023
Snippet Static triggering of aftershocks The most predictable earthquakes are aftershocks, which invariably follow mainshocks. So what triggers aftershocks? It was...
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to...
Resolving whether static (1-3) or dynamic (4-8) stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 583
SubjectTerms 704/2151/210
704/2151/508
Decay
Density
Dynamics
Earth sciences
Earth, ocean, space
Earthquakes
Earthquakes, seismology
Exact sciences and technology
Faults
Humanities and Social Sciences
Internal geophysics
Japan
letter
multidisciplinary
Properties
Science
Science (multidisciplinary)
Seismic activity
Seismic engineering
Seismic hazard
Seismic phenomena
Seismic waves
Strains and stresses
Stress relaxation (Materials)
Stress relieving (Materials)
Stresses
Tectonics. Structural geology. Plate tectonics
Temporal logic
United States
Title Decay of aftershock density with distance does not indicate triggering by dynamic stress
URI https://link.springer.com/article/10.1038/nature09402
https://www.ncbi.nlm.nih.gov/pubmed/20882015
https://www.proquest.com/docview/763168664
https://www.proquest.com/docview/1753529959
https://www.proquest.com/docview/756300237
https://www.proquest.com/docview/889401277
Volume 467
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8hY7KoPEpRWsSN3afUCkrA4kKjU30zXL8UZBQ0pH0of89d4nbLtDykhdfEucud_7ZPv-OkGNAQpHjdhAm8QAmKIr3QqGNCllsOc_iiKkEzw5_maRnl-zztD_1uTmlT6tcxcQ6UJtC4xr5CfhBlIo0Ze_mVyEWjcLNVV9B4ybZR-YyzOjiU77J8PiLhNkfz-sl4qRhzUTuuLg1IPmwfGeuSlCRa2pbbAOf_2yc1uPR-B6564EkHTaWPyA3bH5IbtUJnbo8JAfeaUv62jNLv7lPph-sVktaOFqXBi9_QDCkBlPYqyXFFVlqEE7CbdQUcGteVBT3tDFrilagjVlNXEizJTVNJXvanDV5QC7Hpxejs9CXVghVyuMqNFnCUqscYGtuBk67OOV8YNK-4ZkQmhuYNDOwVQJKZ1niYNBKMmEj7YSLNUSJh2QvL3L7mNCe7Qut-ji1AXQD8VPFzEYJY_AGYTMekLcr_Urtecex_MUvWe9_J0JeM0ZAjtfC84ZuY4cYGkoigUWOGTIztShLObz4PprIIaAQDsCUJQF5vk3s07fzltArL-QK6JdW_lwCfB1SY7UkOy1JPf95Ja-1vmy1zhrjbnvMUUsQ_Fm3mrutv2-tB8S-gJdBoZ3V7yh9wCnl2j0C8mzdik_GHLrcFotSIidrP0Z-uYDQHTIc6eIAxvHdIkKABaKYg8ijxhc2PcT5GuDLgLxYOcemh1vM-OS_X9Iht5tUDUzOOSJ71e-FfQoIsMq6tZ_DVYwivI4_dsn--9PJ1_M_jt9bFQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-QscwaGOAFK1x0th9QKjamFq29QE60Tfj2E6ZBElHUqH-UfyP3OWjW6Dlbc--OM6d7_xzfP4dITuAhLyY267rsy5sUBRvu0Ib5QbMch4xL1A-3h0-HYb9s-DjuDNeI7_ruzCYVlnHxCJQm1TjP_J98AMvFGEYvJ9euFg0Cg9X6woa5aw4tvNfsGPL3g0Owby7jB19GB303aqogKtCznLXRH4QWhUDquSmG-uYhZx3TdgxPBJCcwPbxQBG6cPrgsiPIVz7kbCejkXMNPgH9HuD3IR1t40Oxcf8MqPkL9Ln6jpg2xf7JUsnctWxxgJYLQN3pyoDk8RlLY1lYPefg9pi_Tu6T-5VwJX2ypm2QdZsskluFQmkOtskG1WQyOjrisn6zQMyPrRazWka06IUefYNgi81mDKfzyn-AaYG4Ss8Rk0KjyZpTvEMHbO0aA7anxREiTSaUzNP1I9zTcu7LQ_J2bVo_RFZT9LEPiG0bTtCqw5upQBNQbxWLLCeHwTwBmEj7pC3tX6lrnjOsdzGd1mct_tCXjGGQ3YWwtOS3mOFGBpKImFGghk5EzXLMtkbfTkYyh6gHg5AOPAd8nKZ2ODzp4bQXiUUpzAurap7EPB1SMXVkGw1JPX0_EJeaX3VaJ2Uxl3WzVZDEOKHbjRvN2bfQg-ItQGfg0Jb9XSUVYDL5MIdHfJi0Yo9Y85eYtNZJpEDtsOQz84hdIUMR3o6gI18tYgQYAGPcRB5XPrC5Qhxfwh41iG7tXNcjnCJGZ_-90uek9v90emJPBkMj1vkTpkmgolBW2Q9_zmzzwB95tF24fOUfL3uIPMHxDiUXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEAgJITbeQscwaONlUtTGebH7AaFqpVoZVAg20W-Z4zhlEiQdSYX60_h33CVOu0DLt332xXHufOfH8fk5QvYACTkJ113bZV3YoEjesYWKpe0xzXnEHE-6eHf44yg4OvXej_3xBvld34XBtMo6JpaBOs4U_iNvgx84gQgCr52YrIhP_cHb6YWNBaTwoLWuplHNkGM9_wW7t_zNsA-m3mds8O7k8Mg2BQZsGXBW2HHkeoGWCSBMHncTlbCA824c-DGPhFA8hq2jByN24dVe5CYQut1IaEclImEKfAX6vUauc9d30MX4mC-zS_4igDZXAzuuaFeMnchbxxqLoVkSbk9lDuZJqroaq4DvP4e25Vo4uEvuGBBLe9Ws2yIbOt0mN8pkUpVvky0TMHL6yrBav75Hxn2t5JxmCS3LkuffIBDTGNPniznFv8E0RigLj9E4g0fTrKB4no4ZW7QA7U9K0kQazWk8T-WPc0Wrey73yemVaP0B2UyzVD8itKN9oaSP2ypAVhC7JfO043oevEHoiFvkoNZvqAznOZbe-B6WZ--uCC8ZwyJ7C-FpRfWxRgwNFSJ5RorzcCJneR72Tr4ejsIeICAOoNhzLfJ8ldjwy-eG0EsjlGQwLiXNnQj4OqTlaki2GpJqen4RXmp90WidVMZd1c1OQxBiiWo07zZm30IPiLsBq4NCW_V0DE2wy8OFa1rk2aIVe8b8vVRnszxEPlifIbedRegaGY5UdQAh-XoRIcACDuMg8rDyheUIca8I2NYi-7VzLEe4woyP__slT8lNCC_hh-HouEVuVRkjmCO0QzaLnzP9BIBoEe2WLk_J2VXHmD_wPZiT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+of+aftershock+density+with+distance+does+not+indicate+triggering+by+dynamic+stress&rft.jtitle=Nature+%28London%29&rft.au=Richards-Dinger%2C+Keith&rft.au=Stein%2C+Ross+S&rft.au=Toda%2C+Shinji&rft.date=2010-09-30&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=467&rft.issue=7315&rft.spage=583&rft_id=info:doi/10.1038%2Fnature09402&rft.externalDocID=A238751943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon