Abundance: Asymmetric Graph Removal Lemmas and Integer Solutions to Linear Equations

We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer to a question of Gishboliner, Shapira, and Wigderson by showing that for every $t \geqslant 4$, there are $K_t$-abundant graphs of chromatic...

Full description

Saved in:
Bibliographic Details
Main Authors Girão, António, Hurley, Eoin, Illingworth, Freddie, Michel, Lukas
Format Journal Article
LanguageEnglish
Published 27.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer to a question of Gishboliner, Shapira, and Wigderson by showing that for every $t \geqslant 4$, there are $K_t$-abundant graphs of chromatic number $t$. Using similar methods, we also extend work of Ruzsa by proving that a set $\mathcal{A} \subset \{1,\dots,N\}$ which avoids solutions with distinct integers to an equation of genus at least two has size $\mathcal{O}(\sqrt{N})$. The best previous bound was $N^{1 - o(1)}$ and the exponent of $1/2$ is best possible in such a result. Finally, we investigate the relationship between polynomial dependencies in asymmetric removal lemmas and the problem of avoiding integer solutions to equations. The results suggest a potentially deep correspondence. Many open questions remain.
AbstractList We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer to a question of Gishboliner, Shapira, and Wigderson by showing that for every $t \geqslant 4$, there are $K_t$-abundant graphs of chromatic number $t$. Using similar methods, we also extend work of Ruzsa by proving that a set $\mathcal{A} \subset \{1,\dots,N\}$ which avoids solutions with distinct integers to an equation of genus at least two has size $\mathcal{O}(\sqrt{N})$. The best previous bound was $N^{1 - o(1)}$ and the exponent of $1/2$ is best possible in such a result. Finally, we investigate the relationship between polynomial dependencies in asymmetric removal lemmas and the problem of avoiding integer solutions to equations. The results suggest a potentially deep correspondence. Many open questions remain.
Author Girão, António
Michel, Lukas
Illingworth, Freddie
Hurley, Eoin
Author_xml – sequence: 1
  givenname: António
  surname: Girão
  fullname: Girão, António
– sequence: 2
  givenname: Eoin
  surname: Hurley
  fullname: Hurley, Eoin
– sequence: 3
  givenname: Freddie
  surname: Illingworth
  fullname: Illingworth, Freddie
– sequence: 4
  givenname: Lukas
  surname: Michel
  fullname: Michel, Lukas
BackLink https://doi.org/10.48550/arXiv.2310.18202$$DView paper in arXiv
BookMark eNotj71OwzAURj3AAIUHYMIvkBL_xHbYoqqUSpGQIHt0k9yApdguTlLRt6ekTJ--Mxzp3JIrHzwS8sDStTRZlj5B_LHHNRdnwAxP-Q2pimb2HfgWn2kxnpzDKdqW7iIcvug7unCEgZboHIwUfEf3fsJPjPQjDPNkgx_pFGhpPUKk2-8ZFnZHrnsYRrz_3xWpXrbV5jUp33b7TVEmoDRPAJnQrU5lw1DkXdZDC1qjYkI0OecStDKNznQOUhkphDx_wL4HJYAZzcWKPF60S1Z9iNZBPNV_efWSJ34BGRBMBg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2310.18202
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2310_18202
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a672-ae137c704b1e39d5faca77e6133b9224a768b7579a4684334768aeffa63a18723
IEDL.DBID GOX
IngestDate Mon Jan 08 05:42:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a672-ae137c704b1e39d5faca77e6133b9224a768b7579a4684334768aeffa63a18723
OpenAccessLink https://arxiv.org/abs/2310.18202
ParticipantIDs arxiv_primary_2310_18202
PublicationCentury 2000
PublicationDate 2023-10-27
PublicationDateYYYYMMDD 2023-10-27
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-27
  day: 27
PublicationDecade 2020
PublicationYear 2023
Score 1.9000424
SecondaryResourceType preprint
Snippet We prove that a large family of pairs of graphs satisfy a polynomial dependence in asymmetric graph removal lemmas. In particular, we give an unexpected answer...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Combinatorics
Mathematics - Number Theory
Title Abundance: Asymmetric Graph Removal Lemmas and Integer Solutions to Linear Equations
URI https://arxiv.org/abs/2310.18202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1JT4QwGG3GOXkxGjXjmu_gFQVaWuqNmFlijCYGE26khdZ4AHTAif57vwIuF49dTq_L916X9xFywYIyEsyiOom1RoFimVtS2jOitJzLIvZ17_Z5z1dP7DaLsgmB778wav3xshn8gXV75cjHpbMYx012Kwzdk63lQzZcTvZWXGP_337IMfuqP0FisUt2RnYHyTAce2Ri6n2SJtp9t0B0ryFpP6vKJbEqYOmsouHRVA0ONtyZqlItoK4Hd0j3bNbwc2IFXQOoGXFOwvxtsOZuD0i6mKc3K29MZuApLkJPmYCKQvhMB4bKMrKqUEIYDKZUSwyjCmm_FpGQivGYUcqwrIy1ilMVxCKkh2RaN7WZEZCWSsNiyZmSjFsUTMgKkNVwVoZ-pP0jMushyF8Hv4rcoZP36Bz_33RCtl0mdbcth-KUTLv1uznDeNvp8x70L8ALfqE
link.rule.ids 228,230,780,885
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abundance%3A+Asymmetric+Graph+Removal+Lemmas+and+Integer+Solutions+to+Linear+Equations&rft.au=Gir%C3%A3o%2C+Ant%C3%B3nio&rft.au=Hurley%2C+Eoin&rft.au=Illingworth%2C+Freddie&rft.au=Michel%2C+Lukas&rft.date=2023-10-27&rft_id=info:doi/10.48550%2Farxiv.2310.18202&rft.externalDocID=2310_18202