Fast Algorithms for Surface Reconstruction from Point Cloud

We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the co...

Full description

Saved in:
Bibliographic Details
Main Authors He, Yuchen, Huska, Martin, Kang, Sung Ha, Liu, Hao
Format Journal Article
LanguageEnglish
Published 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency.
AbstractList We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the computational efficiency through relaxation on the time-step constraint. An approach based on Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating Direction Method of Multipliers-type algorithm, where each sub-problem is solved efficiently. We analyze the effects of the parameters on the level-set evolution and explore the connection between these two approaches. We present numerical examples to validate our algorithms in terms of their accuracy and efficiency.
Author Liu, Hao
Huska, Martin
He, Yuchen
Kang, Sung Ha
Author_xml – sequence: 1
  givenname: Yuchen
  surname: He
  fullname: He, Yuchen
– sequence: 2
  givenname: Martin
  surname: Huska
  fullname: Huska, Martin
– sequence: 3
  givenname: Sung Ha
  surname: Kang
  fullname: Kang, Sung Ha
– sequence: 4
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
BackLink https://doi.org/10.48550/arXiv.1907.01142$$DView paper in arXiv
BookMark eNotj01OwzAYRL0oC1o4AKv6Agm287mOxaqKKFSqBILuI_-CpcRGjoPg9pTCaqRZzJu3RIuYokPohpIaWs7Jrcpf4bOmkoiaUArsEt3t1FTwdnhLOZT3ccI-Zfw6Z6-Mwy_OpDiVPJsSUsQ-pxE_pxAL7oY02yt04dUwuev_XKHj7v7YPVaHp4d9tz1UaiNY1XBm7QnODFVaae6kB_CttVKAtEoAaRspCHXaALRSM87BeGFPPTWasGaF1n-z5_f9Rw6jyt_9r0V_tmh-ABAIQ3I
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.1907.01142
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1907_01142
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a672-352dd5502c1abab5e9f44f8dd9749da740839701ebc4489b2554cf7d4081cb023
IEDL.DBID GOX
IngestDate Mon Jan 08 05:50:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a672-352dd5502c1abab5e9f44f8dd9749da740839701ebc4489b2554cf7d4081cb023
OpenAccessLink https://arxiv.org/abs/1907.01142
ParticipantIDs arxiv_primary_1907_01142
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationYear 2019
Score 1.7374765
SecondaryResourceType preprint
Snippet We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Numerical Analysis
Mathematics - Numerical Analysis
Mathematics - Optimization and Control
Title Fast Algorithms for Surface Reconstruction from Point Cloud
URI https://arxiv.org/abs/1907.01142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQCFB5ygOrIXHcuBZTVREqJB4SRcoW-QmVSoOaFPHzuThBZWE93-A7D9_32XdngMtYJNIZaSgzwlDOIknH1nqK1HXMtHfchcuch8d09srv81HeA_LbC6PW34uvdj6wrq4RrcRVaPfsQ5-xpmTr7ilvHyfDKK7Of-uHHDOY_oBEtge7Hbsjk_Y49qHnVgdwk6mqJpPlW4lC_P2jIsgTyctm7ZVxpJF_2yGupOn2IM_lYlWT6bLc2EOYZ7fz6Yx2fxZQlYqmLp5Zi_tiJlZa6ZGTnnOP0WPs0irBkfFIEcVOG9RFUiOh58YLi_bYaMTPIxig7HdDIAKpjRER86gpeGqYssJrrmRqE58YFR_DMERafLZjKYomCUVIwsn_S6ewg5Av24LTMxhgfO4cYbXWFyG3P82cd2E
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Algorithms+for+Surface+Reconstruction+from+Point+Cloud&rft.au=He%2C+Yuchen&rft.au=Huska%2C+Martin&rft.au=Kang%2C+Sung+Ha&rft.au=Liu%2C+Hao&rft.date=2019-07-01&rft_id=info:doi/10.48550%2Farxiv.1907.01142&rft.externalDocID=1907_01142