Fast Algorithms for Surface Reconstruction from Point Cloud
We consider constructing a surface from a given set of point cloud data. We explore two fast algorithms to minimize the weighted minimum surface energy in [Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319, 2000]. An approach using Semi-Implicit Method (SIM) improves the co...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider constructing a surface from a given set of point cloud data. We
explore two fast algorithms to minimize the weighted minimum surface energy in
[Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319,
2000]. An approach using Semi-Implicit Method (SIM) improves the computational
efficiency through relaxation on the time-step constraint. An approach based on
Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating
Direction Method of Multipliers-type algorithm, where each sub-problem is
solved efficiently. We analyze the effects of the parameters on the level-set
evolution and explore the connection between these two approaches. We present
numerical examples to validate our algorithms in terms of their accuracy and
efficiency. |
---|---|
AbstractList | We consider constructing a surface from a given set of point cloud data. We
explore two fast algorithms to minimize the weighted minimum surface energy in
[Zhao, Osher, Merriman and Kang, Comp.Vision and Image Under., 80(3):295-319,
2000]. An approach using Semi-Implicit Method (SIM) improves the computational
efficiency through relaxation on the time-step constraint. An approach based on
Augmented Lagrangian Method (ALM) reduces the run-time via an Alternating
Direction Method of Multipliers-type algorithm, where each sub-problem is
solved efficiently. We analyze the effects of the parameters on the level-set
evolution and explore the connection between these two approaches. We present
numerical examples to validate our algorithms in terms of their accuracy and
efficiency. |
Author | Liu, Hao Huska, Martin He, Yuchen Kang, Sung Ha |
Author_xml | – sequence: 1 givenname: Yuchen surname: He fullname: He, Yuchen – sequence: 2 givenname: Martin surname: Huska fullname: Huska, Martin – sequence: 3 givenname: Sung Ha surname: Kang fullname: Kang, Sung Ha – sequence: 4 givenname: Hao surname: Liu fullname: Liu, Hao |
BackLink | https://doi.org/10.48550/arXiv.1907.01142$$DView paper in arXiv |
BookMark | eNotj01OwzAYRL0oC1o4AKv6Agm287mOxaqKKFSqBILuI_-CpcRGjoPg9pTCaqRZzJu3RIuYokPohpIaWs7Jrcpf4bOmkoiaUArsEt3t1FTwdnhLOZT3ccI-Zfw6Z6-Mwy_OpDiVPJsSUsQ-pxE_pxAL7oY02yt04dUwuev_XKHj7v7YPVaHp4d9tz1UaiNY1XBm7QnODFVaae6kB_CttVKAtEoAaRspCHXaALRSM87BeGFPPTWasGaF1n-z5_f9Rw6jyt_9r0V_tmh-ABAIQ3I |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKY AKZ GOX |
DOI | 10.48550/arxiv.1907.01142 |
DatabaseName | arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 1907_01142 |
GroupedDBID | AKY AKZ GOX |
ID | FETCH-LOGICAL-a672-352dd5502c1abab5e9f44f8dd9749da740839701ebc4489b2554cf7d4081cb023 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:50:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a672-352dd5502c1abab5e9f44f8dd9749da740839701ebc4489b2554cf7d4081cb023 |
OpenAccessLink | https://arxiv.org/abs/1907.01142 |
ParticipantIDs | arxiv_primary_1907_01142 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationYear | 2019 |
Score | 1.7374765 |
SecondaryResourceType | preprint |
Snippet | We consider constructing a surface from a given set of point cloud data. We
explore two fast algorithms to minimize the weighted minimum surface energy in... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Numerical Analysis Mathematics - Numerical Analysis Mathematics - Optimization and Control |
Title | Fast Algorithms for Surface Reconstruction from Point Cloud |
URI | https://arxiv.org/abs/1907.01142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQCFB5ygOrIXHcuBZTVREqJB4SRcoW-QmVSoOaFPHzuThBZWE93-A7D9_32XdngMtYJNIZaSgzwlDOIknH1nqK1HXMtHfchcuch8d09srv81HeA_LbC6PW34uvdj6wrq4RrcRVaPfsQ5-xpmTr7ilvHyfDKK7Of-uHHDOY_oBEtge7Hbsjk_Y49qHnVgdwk6mqJpPlW4lC_P2jIsgTyctm7ZVxpJF_2yGupOn2IM_lYlWT6bLc2EOYZ7fz6Yx2fxZQlYqmLp5Zi_tiJlZa6ZGTnnOP0WPs0irBkfFIEcVOG9RFUiOh58YLi_bYaMTPIxig7HdDIAKpjRER86gpeGqYssJrrmRqE58YFR_DMERafLZjKYomCUVIwsn_S6ewg5Av24LTMxhgfO4cYbXWFyG3P82cd2E |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Algorithms+for+Surface+Reconstruction+from+Point+Cloud&rft.au=He%2C+Yuchen&rft.au=Huska%2C+Martin&rft.au=Kang%2C+Sung+Ha&rft.au=Liu%2C+Hao&rft.date=2019-07-01&rft_id=info:doi/10.48550%2Farxiv.1907.01142&rft.externalDocID=1907_01142 |