Syntactic complexity of regular ideals

The state complexity of a regular language is the number of states in a minimal deterministic finite automaton accepting the language. The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of regular languages is the wors...

Full description

Saved in:
Bibliographic Details
Main Authors Brzozowski, Janusz A, Szykuła, Marek, Ye, Yuli
Format Journal Article
LanguageEnglish
Published 20.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The state complexity of a regular language is the number of states in a minimal deterministic finite automaton accepting the language. The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of regular languages is the worst-case syntactic complexity taken as a function of the state complexity $n$ of languages in that class. We prove that $n^{n-1}$, $n^{n-1}+n-1$, and $n^{n-2}+(n-2)2^{n-2}+1$ are tight upper bounds on the syntactic complexities of right ideals and prefix-closed languages, left ideals and suffix-closed languages, and two-sided ideals and factor-closed languages, respectively. Moreover, we show that the transition semigroups meeting the upper bounds for all three types of ideals are unique, and the numbers of generators (4, 5, and 6, respectively) cannot be reduced.
DOI:10.48550/arxiv.1509.06032