Exact Kohn-Sham Density Functional Theory on a Lattice
We formulate a set of equations that facilitate an exact numerical solution of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour hopping and arbitrary site potentials. The approach relies on a mapping of the non-interacting Kohn-Sham ground state wave function onto the exact...
Saved in:
Main Authors | , |
---|---|
Format | Journal Article |
Language | English |
Published |
24.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We formulate a set of equations that facilitate an exact numerical solution
of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour
hopping and arbitrary site potentials. The approach relies on a mapping of the
non-interacting Kohn-Sham ground state wave function onto the exact interacting
system wavefunction and two interconnected self-consistent cycles. The
self-consistent cycles are performed within the framework of the Kohn-Sham
non-interacting system without any direct reference to the interacting system.
The first self-consistent cycle updates the mapping of the non-interacting
wavefunction onto the interacting wavefunction based on a trial input density,
while the second self-consistent cycle updates the Kohn-Sham potential to yield
the trial density. At the solution point, the exact density, the exact
Kohn-Sham potential, the density functional correlation energy and the exact
interacting system ground state energy are available. |
---|---|
AbstractList | We formulate a set of equations that facilitate an exact numerical solution
of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour
hopping and arbitrary site potentials. The approach relies on a mapping of the
non-interacting Kohn-Sham ground state wave function onto the exact interacting
system wavefunction and two interconnected self-consistent cycles. The
self-consistent cycles are performed within the framework of the Kohn-Sham
non-interacting system without any direct reference to the interacting system.
The first self-consistent cycle updates the mapping of the non-interacting
wavefunction onto the interacting wavefunction based on a trial input density,
while the second self-consistent cycle updates the Kohn-Sham potential to yield
the trial density. At the solution point, the exact density, the exact
Kohn-Sham potential, the density functional correlation energy and the exact
interacting system ground state energy are available. |
Author | Amouzouvi, Kossi Joubert, Daniel |
Author_xml | – sequence: 1 givenname: Kossi surname: Amouzouvi fullname: Amouzouvi, Kossi – sequence: 2 givenname: Daniel surname: Joubert fullname: Joubert, Daniel |
BackLink | https://doi.org/10.48550/arXiv.1810.10442$$DView paper in arXiv |
BookMark | eNotj71ugzAYRT00Q5v2ATLVL0Di_5oxoqGNgtQh7OjDGGEJ7AqcKrx9WprpSHc4uucJPfjgLUIbSrZCS0l2MF7dz5bq34ESIdgjUocrmIhPofPJuYMBv1s_uTjj_OJNdMFDj8vOhnHGwWPABcTojH1Gqxb6yb7cuUZlfiizz6T4-jhm-yIB9cYSppnkjDaGSyNBClW3nDUNmBqISQWluqa6EVxxrlMghLVUaWApKKJsTRRfo9d_7XK8-h7dAONc_QVUSwC_AdC9QEM |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | GOX |
DOI | 10.48550/arxiv.1810.10442 |
DatabaseName | arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 1810_10442 |
GroupedDBID | GOX |
ID | FETCH-LOGICAL-a672-2825321dc35c5a546bf32ddacba0c94118b18d4363389a002f168a29a606eb063 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:49:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a672-2825321dc35c5a546bf32ddacba0c94118b18d4363389a002f168a29a606eb063 |
OpenAccessLink | https://arxiv.org/abs/1810.10442 |
ParticipantIDs | arxiv_primary_1810_10442 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-24 |
PublicationDateYYYYMMDD | 2018-10-24 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationYear | 2018 |
Score | 1.7153176 |
SecondaryResourceType | preprint |
Snippet | We formulate a set of equations that facilitate an exact numerical solution
of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Physics - Materials Science Physics - Strongly Correlated Electrons |
Title | Exact Kohn-Sham Density Functional Theory on a Lattice |
URI | https://arxiv.org/abs/1810.10442 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVKJxYEAlQ-5YHVInHObjwiaKgQgoEiZYvOHxEMFFQCKv-esxMEC6t9y9nSvXe-u2fGzoghBJ2BFTaDVoD2IAxilHE1ssSgtMXU5Xun549wU6t6xPjPLAyu1s-fvT6wfT8n-ElVSKAguyFlbNm6vq_74mSS4hrsf-2IY6alPyBRbbOtgd3xi_46dtgoLHeZnq3RdTwOl4iHJ3zhV7FpvPviFWFK_xTH-xF5_rrkyG-xix1pe2xRzRaXczF8VyBQT-OMs1SFzL0rlFOoQNu2kN6js5g5A0TkbV56KDQlhQYpELW5LlEapBQiWGIK-2xMGX-YMA5EM6alkhk4C063RjlfWKW00WgMwAGbJCebt16Roon-N8n_w_-3jtgmoX0Sc5VwzMbd6iOcEKJ29jQd6zcpaHMv |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Kohn-Sham+Density+Functional+Theory+on+a+Lattice&rft.au=Amouzouvi%2C+Kossi&rft.au=Joubert%2C+Daniel&rft.date=2018-10-24&rft_id=info:doi/10.48550%2Farxiv.1810.10442&rft.externalDocID=1810_10442 |