Exact Kohn-Sham Density Functional Theory on a Lattice

We formulate a set of equations that facilitate an exact numerical solution of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour hopping and arbitrary site potentials. The approach relies on a mapping of the non-interacting Kohn-Sham ground state wave function onto the exact...

Full description

Saved in:
Bibliographic Details
Main Authors Amouzouvi, Kossi, Joubert, Daniel
Format Journal Article
LanguageEnglish
Published 24.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We formulate a set of equations that facilitate an exact numerical solution of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour hopping and arbitrary site potentials. The approach relies on a mapping of the non-interacting Kohn-Sham ground state wave function onto the exact interacting system wavefunction and two interconnected self-consistent cycles. The self-consistent cycles are performed within the framework of the Kohn-Sham non-interacting system without any direct reference to the interacting system. The first self-consistent cycle updates the mapping of the non-interacting wavefunction onto the interacting wavefunction based on a trial input density, while the second self-consistent cycle updates the Kohn-Sham potential to yield the trial density. At the solution point, the exact density, the exact Kohn-Sham potential, the density functional correlation energy and the exact interacting system ground state energy are available.
AbstractList We formulate a set of equations that facilitate an exact numerical solution of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour hopping and arbitrary site potentials. The approach relies on a mapping of the non-interacting Kohn-Sham ground state wave function onto the exact interacting system wavefunction and two interconnected self-consistent cycles. The self-consistent cycles are performed within the framework of the Kohn-Sham non-interacting system without any direct reference to the interacting system. The first self-consistent cycle updates the mapping of the non-interacting wavefunction onto the interacting wavefunction based on a trial input density, while the second self-consistent cycle updates the Kohn-Sham potential to yield the trial density. At the solution point, the exact density, the exact Kohn-Sham potential, the density functional correlation energy and the exact interacting system ground state energy are available.
Author Amouzouvi, Kossi
Joubert, Daniel
Author_xml – sequence: 1
  givenname: Kossi
  surname: Amouzouvi
  fullname: Amouzouvi, Kossi
– sequence: 2
  givenname: Daniel
  surname: Joubert
  fullname: Joubert, Daniel
BackLink https://doi.org/10.48550/arXiv.1810.10442$$DView paper in arXiv
BookMark eNotj71ugzAYRT00Q5v2ATLVL0Di_5oxoqGNgtQh7OjDGGEJ7AqcKrx9WprpSHc4uucJPfjgLUIbSrZCS0l2MF7dz5bq34ESIdgjUocrmIhPofPJuYMBv1s_uTjj_OJNdMFDj8vOhnHGwWPABcTojH1Gqxb6yb7cuUZlfiizz6T4-jhm-yIB9cYSppnkjDaGSyNBClW3nDUNmBqISQWluqa6EVxxrlMghLVUaWApKKJsTRRfo9d_7XK8-h7dAONc_QVUSwC_AdC9QEM
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID GOX
DOI 10.48550/arxiv.1810.10442
DatabaseName arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1810_10442
GroupedDBID GOX
ID FETCH-LOGICAL-a672-2825321dc35c5a546bf32ddacba0c94118b18d4363389a002f168a29a606eb063
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a672-2825321dc35c5a546bf32ddacba0c94118b18d4363389a002f168a29a606eb063
OpenAccessLink https://arxiv.org/abs/1810.10442
ParticipantIDs arxiv_primary_1810_10442
PublicationCentury 2000
PublicationDate 2018-10-24
PublicationDateYYYYMMDD 2018-10-24
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-24
  day: 24
PublicationDecade 2010
PublicationYear 2018
Score 1.7153176
SecondaryResourceType preprint
Snippet We formulate a set of equations that facilitate an exact numerical solution of the Kohn-Sham potential for a finite Hubbard chain with nearest neighbour...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Physics - Materials Science
Physics - Strongly Correlated Electrons
Title Exact Kohn-Sham Density Functional Theory on a Lattice
URI https://arxiv.org/abs/1810.10442
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVKJxYEAlQ-5YHVInHObjwiaKgQgoEiZYvOHxEMFFQCKv-esxMEC6t9y9nSvXe-u2fGzoghBJ2BFTaDVoD2IAxilHE1ssSgtMXU5Xun549wU6t6xPjPLAyu1s-fvT6wfT8n-ElVSKAguyFlbNm6vq_74mSS4hrsf-2IY6alPyBRbbOtgd3xi_46dtgoLHeZnq3RdTwOl4iHJ3zhV7FpvPviFWFK_xTH-xF5_rrkyG-xix1pe2xRzRaXczF8VyBQT-OMs1SFzL0rlFOoQNu2kN6js5g5A0TkbV56KDQlhQYpELW5LlEapBQiWGIK-2xMGX-YMA5EM6alkhk4C063RjlfWKW00WgMwAGbJCebt16Roon-N8n_w_-3jtgmoX0Sc5VwzMbd6iOcEKJ29jQd6zcpaHMv
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Kohn-Sham+Density+Functional+Theory+on+a+Lattice&rft.au=Amouzouvi%2C+Kossi&rft.au=Joubert%2C+Daniel&rft.date=2018-10-24&rft_id=info:doi/10.48550%2Farxiv.1810.10442&rft.externalDocID=1810_10442