DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision

Low-light image enhancement restores colors and details of single image and improves high-level visual tasks. However, restoring the lost details in the dark area is a challenge by only relying on the RGB domain. In this paper, we introduce frequency as a new clue into the network and propose a DCT-...

Full description

Saved in:
Bibliographic Details
Main Authors Yin, Xiangchen, Yu, Zhenda, Gao, Xin, Sun, Xiao
Format Journal Article
LanguageEnglish
Published 13.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-light image enhancement restores colors and details of single image and improves high-level visual tasks. However, restoring the lost details in the dark area is a challenge by only relying on the RGB domain. In this paper, we introduce frequency as a new clue into the network and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. In addition, we propose a cross domain fusion (CDF) for reducing the differences between the RGB domain and the frequency domain. Our DEFormer has achieved advanced results in both the LOL and MIT-Adobe FiveK datasets and improved the performance of dark detection.
AbstractList Low-light image enhancement restores colors and details of single image and improves high-level visual tasks. However, restoring the lost details in the dark area is a challenge by only relying on the RGB domain. In this paper, we introduce frequency as a new clue into the network and propose a DCT-driven enhancement transformer (DEFormer) framework. First, we propose a learnable frequency branch (LFB) for frequency enhancement contains DCT processing and curvature-based frequency enhancement (CFE) to represent frequency features. In addition, we propose a cross domain fusion (CDF) for reducing the differences between the RGB domain and the frequency domain. Our DEFormer has achieved advanced results in both the LOL and MIT-Adobe FiveK datasets and improved the performance of dark detection.
Author Gao, Xin
Yin, Xiangchen
Yu, Zhenda
Sun, Xiao
Author_xml – sequence: 1
  givenname: Xiangchen
  surname: Yin
  fullname: Yin, Xiangchen
– sequence: 2
  givenname: Zhenda
  surname: Yu
  fullname: Yu, Zhenda
– sequence: 3
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
– sequence: 4
  givenname: Xiao
  surname: Sun
  fullname: Sun, Xiao
BackLink https://doi.org/10.48550/arXiv.2309.06941$$DView paper in arXiv
BookMark eNotz71OwzAYhWEPMEDhApjwDTjYseMfNpSktFIkOkRdo4_6S2vROMipCtw9EJje5ehIzzW5iGNEQu4Ez5QtCv4A6TOcs1xyl3HtlLgim6pejmnA9EirsmU-hTNGWscDxB0OGE-0TRCnft7Qn9Bm_GDHsD-c6HqAPVKInlaQ3ug2TGGMN-Syh-OEt_9dkHZZt-WKNS_P6_KpYaCNYAi9ks6i0DY3Ho2CnSty0SsBhTROYA7eaouGa22U8dL02lvJCyUEvGouF-T-73Ymde8pDJC-ul9aN9PkNwo9SWE
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2309.06941
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2309_06941
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a671-eaf4398e16827de74ac9521f41a53791e2ad868e7066747d37f6d8305411ab603
IEDL.DBID GOX
IngestDate Wed Sep 11 12:28:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-eaf4398e16827de74ac9521f41a53791e2ad868e7066747d37f6d8305411ab603
OpenAccessLink https://arxiv.org/abs/2309.06941
ParticipantIDs arxiv_primary_2309_06941
PublicationCentury 2000
PublicationDate 2023-09-13
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-13
  day: 13
PublicationDecade 2020
PublicationYear 2023
Score 1.8940834
SecondaryResourceType preprint
Snippet Low-light image enhancement restores colors and details of single image and improves high-level visual tasks. However, restoring the lost details in the dark...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Artificial Intelligence
Computer Science - Computer Vision and Pattern Recognition
Title DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision
URI https://arxiv.org/abs/2309.06941
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8QgECbrnrwYjZr1GQ5e0YXSQr2ZbetqfB2q6a2BAtGoXYPr4-c7tLvRiyeSYULCkGG-gXkgdGQkN6BImjBpHeE84kRq3hBArrEQYyCqkCh8fZNM7_llFVcDhJe5MMp_P3329YH1-wng4_Q4pGaCf7PCWAjZOr-t-s_JrhTXgv-XDzBmR_pjJIp1tLZAd_isP44NNLDtJrrL8gKQofWnOJuUxPhwweC8fQwCD49zuFyiR-sxDPhq9kVegteML15B3zF4-zhT_hk_dJngW6gs8nIyJYtGBkQlghKrHJh9aWkimTBWcNWkYDUdpyqOREotU0Ym0ooQcMqFiYRLjARF5JQqnYyjbTRsZ60dISxhFeUa3ugYtM3JlBpAXDZtmBGOSbqDRt3267e-VkUdJFN3ktn9f2oPrYYu6iEMgkb7aDj3H_YAbO1cH3YC_wHqsH0r
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEFormer%3A+DCT-driven+Enhancement+Transformer+for+Low-light+Image+and+Dark+Vision&rft.au=Yin%2C+Xiangchen&rft.au=Yu%2C+Zhenda&rft.au=Gao%2C+Xin&rft.au=Sun%2C+Xiao&rft.date=2023-09-13&rft_id=info:doi/10.48550%2Farxiv.2309.06941&rft.externalDocID=2309_06941