Multilevel Emulation for Stochastic Computer Models with Application to Large Offshore Wind farms

Renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer mode...

Full description

Saved in:
Bibliographic Details
Main Authors Kennedy, Jack C, Henderson, Daniel A, Wilson, Kevin J
Format Journal Article
LanguageEnglish
Published 19.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer models can be prohibitively slow and thus an emulator may be constructed and deployed to allow for efficient computation. We present a novel heteroscedastic Gaussian Process emulator which exploits cheap approximations to a stochastic offshore wind farm simulator. We also conduct a probabilistic sensitivity analysis to understand the influence of key parameters in the wind farm model which will help us to plan a probability elicitation in the future.
AbstractList Renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models allow us to explore future scenarios to aid decision making whilst considering the most relevant uncertainties. Complex stochastic computer models can be prohibitively slow and thus an emulator may be constructed and deployed to allow for efficient computation. We present a novel heteroscedastic Gaussian Process emulator which exploits cheap approximations to a stochastic offshore wind farm simulator. We also conduct a probabilistic sensitivity analysis to understand the influence of key parameters in the wind farm model which will help us to plan a probability elicitation in the future.
Author Henderson, Daniel A
Wilson, Kevin J
Kennedy, Jack C
Author_xml – sequence: 1
  givenname: Jack C
  surname: Kennedy
  fullname: Kennedy, Jack C
– sequence: 2
  givenname: Daniel A
  surname: Henderson
  fullname: Henderson, Daniel A
– sequence: 3
  givenname: Kevin J
  surname: Wilson
  fullname: Wilson, Kevin J
BackLink https://doi.org/10.48550/arXiv.2003.08921$$DView paper in arXiv
BookMark eNotz7tOwzAYhmEPMEDhApjwDaTEdn3IWEXlIKXqQCXG6I8PxJITR45T4O4RLdO3vPqk5xZdjXG0CD2Qcr1RnJdPkL79aU3Lkq1LVVFyg2C_hOyDPdmAd8MSIPs4YhcTfs9R9zBnr3Edh2nJNuF9NDbM-MvnHm-nKXh96XPEDaRPiw_OzX1MFn_40WAHaZjv0LWDMNv7_12h4_PuWL8WzeHlrd42BQhJCqCKCm3khkliHFgKolKEEGM4t04oQTslla2EqGTJuOwk7RjTynRcS0YtW6HHy-3Z2E7JD5B-2j9re7ayX0hmUWc
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID EPD
GOX
DOI 10.48550/arxiv.2003.08921
DatabaseName arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2003_08921
GroupedDBID EPD
GOX
ID FETCH-LOGICAL-a671-a2826cd74371dfae2a698111dd55ef6862b878e966970357b72b33c8db5c732e3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:37:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-a2826cd74371dfae2a698111dd55ef6862b878e966970357b72b33c8db5c732e3
OpenAccessLink https://arxiv.org/abs/2003.08921
ParticipantIDs arxiv_primary_2003_08921
PublicationCentury 2000
PublicationDate 2020-03-19
PublicationDateYYYYMMDD 2020-03-19
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-19
  day: 19
PublicationDecade 2020
PublicationYear 2020
Score 1.7653445
SecondaryResourceType preprint
Snippet Renewable energy projects, such as large offshore wind farms, are critical to achieving low-emission targets set by governments. Stochastic computer models...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Statistics - Applications
Statistics - Methodology
Title Multilevel Emulation for Stochastic Computer Models with Application to Large Offshore Wind farms
URI https://arxiv.org/abs/2003.08921
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwFLRKJxYEAlQ-9QZWA7Hjj4wVakEI6EAR3So7tlWktkFJQPx8npNUZWFNPD0reXf23TtCrgxnwolgqLWJpIhvU6pzp6hTqQ0Il12eRTfy84t8eEsfZ2LWI7Dxwpjy5-O7nQ9sq5uonLq-1Vl0iu8wFiVb95NZeznZjOLq1m_XIcZsHv1pEuN9stehOxi223FAen59SExjcl1GdQ6MVl1cFiBYhNe6yBcmTkqGTboCxHCyZQXxfBSG29tlqAt4iqptmIRQLYrSwzvSaQimXFVHZDoeTe8eaJdsQI1UCTXIcyRWJOUqccF4ZmSm8afjnBA-RM-G1Up7ZCIZfpBCWcUs57l2VuSKM8-PSX9drP2AALc6FV46ndkckY8w2N4Z90h7vEyVT07IoKnH_LMdXhFjJ_m8KdXp_6_OyC6LvDLq1rJz0q_LL3-Bzbe2l80O_AJvoIUW
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Emulation+for+Stochastic+Computer+Models+with+Application+to+Large+Offshore+Wind+farms&rft.au=Kennedy%2C+Jack+C&rft.au=Henderson%2C+Daniel+A&rft.au=Wilson%2C+Kevin+J&rft.date=2020-03-19&rft_id=info:doi/10.48550%2Farxiv.2003.08921&rft.externalDocID=2003_08921