Topological Signal Processing over Weighted Simplicial Complexes

Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to pre...

Full description

Saved in:
Bibliographic Details
Main Authors Battiloro, Claudio, Sardellitti, Stefania, Barbarossa, Sergio, Di Lorenzo, Paolo
Format Journal Article
LanguageEnglish
Published 16.02.2023
Online AccessGet full text

Cover

Loading…
Abstract Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to present topological signal processing tools for weighted simplicial complexes. Specifically, relying on the weighted Hodge Laplacian theory, we propose efficient strategies to jointly learn the weights of the complex and the filters for the solenoidal, irrotational and harmonic components of the signals defined over the complex. We numerically asses the effectiveness of the proposed procedures.
AbstractList Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to present topological signal processing tools for weighted simplicial complexes. Specifically, relying on the weighted Hodge Laplacian theory, we propose efficient strategies to jointly learn the weights of the complex and the filters for the solenoidal, irrotational and harmonic components of the signals defined over the complex. We numerically asses the effectiveness of the proposed procedures.
Author Battiloro, Claudio
Barbarossa, Sergio
Di Lorenzo, Paolo
Sardellitti, Stefania
Author_xml – sequence: 1
  givenname: Claudio
  surname: Battiloro
  fullname: Battiloro, Claudio
– sequence: 2
  givenname: Stefania
  surname: Sardellitti
  fullname: Sardellitti, Stefania
– sequence: 3
  givenname: Sergio
  surname: Barbarossa
  fullname: Barbarossa, Sergio
– sequence: 4
  givenname: Paolo
  surname: Di Lorenzo
  fullname: Di Lorenzo, Paolo
BackLink https://doi.org/10.48550/arXiv.2302.08561$$DView paper in arXiv
BookMark eNotj81KxDAUhbPQhY4-gCv7Aq1Jb25Md0rxDwYULLgs-bmpgU5TUhnGt7eOrr4D53DgO2cnU5qIsSvBK6kR-Y3Jh7ivauB1xTUqccbuujSnMQ3RmbF4j8O04i0nR8sSp6FIe8rFB8Xh84v82u_mMbq4btq0RjrQcsFOgxkXuvznhnWPD137XG5fn17a-21p1K0otUCLGNBz5bEGRw1IqaXVmoLRIGwIoQEnUDbceKtQ2sYp5ZUhEEEBbNj13-1RoZ9z3Jn83f-q9EcV-AHn80Xq
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID GOX
DOI 10.48550/arxiv.2302.08561
DatabaseName arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2302_08561
GroupedDBID GOX
ID FETCH-LOGICAL-a671-815b55f5d06d523ce934484b88efa831bfff93c15490adb654b9c66d6ae31f633
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-815b55f5d06d523ce934484b88efa831bfff93c15490adb654b9c66d6ae31f633
OpenAccessLink https://arxiv.org/abs/2302.08561
ParticipantIDs arxiv_primary_2302_08561
PublicationCentury 2000
PublicationDate 2023-02-16
PublicationDateYYYYMMDD 2023-02-16
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-16
  day: 16
PublicationDecade 2020
PublicationYear 2023
Score 1.8718022
SecondaryResourceType preprint
Snippet Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications,...
SourceID arxiv
SourceType Open Access Repository
Title Topological Signal Processing over Weighted Simplicial Complexes
URI https://arxiv.org/abs/2302.08561
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA61Jy-iqNQnOXiNbp6b3BSxFkE9uOLeljwmUhCRtkp_vkl2RS9eM0MgXxLmkS8zCJ3VQB2PlSaBUU8EBUOs8Zw4mSnvNbPU54T-_YOaPYu7VrYjhH_-wtjFev7V1wd2y4vkH7Pz5BTk-GaDsUzZun1s-8fJUopr0P_VSz5mGfpjJKbbaGvw7vBVvx07aATvu-iy6RsRZDjw0_w1awz8_GQ3cOZQ4peSoYSQ5IXinU4Fzlf1Ddaw3EPN9Ka5npGhcQGxqqZEU-mkjDJUKqQ4z4PhKQgSTmuIVnPqYoyG-1wcrbLBKSmc8UoFZYHTqDjfR-MU-8ME4crEqIwRvMwhg7YgQCXgGUDUDg7QpCy3--hrU3QZia4gcfi_6Aht5q7pmXxM1TEarxafcJJs68qdFoC_AcVZei4
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Signal+Processing+over+Weighted+Simplicial+Complexes&rft.au=Battiloro%2C+Claudio&rft.au=Sardellitti%2C+Stefania&rft.au=Barbarossa%2C+Sergio&rft.au=Di+Lorenzo%2C+Paolo&rft.date=2023-02-16&rft_id=info:doi/10.48550%2Farxiv.2302.08561&rft.externalDocID=2302_08561