Topological Signal Processing over Weighted Simplicial Complexes
Weighing the topological domain over which data can be represented and analysed is a key strategy in many signal processing and machine learning applications, enabling the extraction and exploitation of meaningful data features and their (higher order) relationships. Our goal in this paper is to pre...
Saved in:
Main Authors | , , , |
---|---|
Format | Journal Article |
Language | English |
Published |
16.02.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Weighing the topological domain over which data can be represented and
analysed is a key strategy in many signal processing and machine learning
applications, enabling the extraction and exploitation of meaningful data
features and their (higher order) relationships. Our goal in this paper is to
present topological signal processing tools for weighted simplicial complexes.
Specifically, relying on the weighted Hodge Laplacian theory, we propose
efficient strategies to jointly learn the weights of the complex and the
filters for the solenoidal, irrotational and harmonic components of the signals
defined over the complex. We numerically asses the effectiveness of the
proposed procedures. |
---|---|
AbstractList | Weighing the topological domain over which data can be represented and
analysed is a key strategy in many signal processing and machine learning
applications, enabling the extraction and exploitation of meaningful data
features and their (higher order) relationships. Our goal in this paper is to
present topological signal processing tools for weighted simplicial complexes.
Specifically, relying on the weighted Hodge Laplacian theory, we propose
efficient strategies to jointly learn the weights of the complex and the
filters for the solenoidal, irrotational and harmonic components of the signals
defined over the complex. We numerically asses the effectiveness of the
proposed procedures. |
Author | Battiloro, Claudio Barbarossa, Sergio Di Lorenzo, Paolo Sardellitti, Stefania |
Author_xml | – sequence: 1 givenname: Claudio surname: Battiloro fullname: Battiloro, Claudio – sequence: 2 givenname: Stefania surname: Sardellitti fullname: Sardellitti, Stefania – sequence: 3 givenname: Sergio surname: Barbarossa fullname: Barbarossa, Sergio – sequence: 4 givenname: Paolo surname: Di Lorenzo fullname: Di Lorenzo, Paolo |
BackLink | https://doi.org/10.48550/arXiv.2302.08561$$DView paper in arXiv |
BookMark | eNotj81KxDAUhbPQhY4-gCv7Aq1Jb25Md0rxDwYULLgs-bmpgU5TUhnGt7eOrr4D53DgO2cnU5qIsSvBK6kR-Y3Jh7ivauB1xTUqccbuujSnMQ3RmbF4j8O04i0nR8sSp6FIe8rFB8Xh84v82u_mMbq4btq0RjrQcsFOgxkXuvznhnWPD137XG5fn17a-21p1K0otUCLGNBz5bEGRw1IqaXVmoLRIGwIoQEnUDbceKtQ2sYp5ZUhEEEBbNj13-1RoZ9z3Jn83f-q9EcV-AHn80Xq |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | GOX |
DOI | 10.48550/arxiv.2302.08561 |
DatabaseName | arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2302_08561 |
GroupedDBID | GOX |
ID | FETCH-LOGICAL-a671-815b55f5d06d523ce934484b88efa831bfff93c15490adb654b9c66d6ae31f633 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:49:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a671-815b55f5d06d523ce934484b88efa831bfff93c15490adb654b9c66d6ae31f633 |
OpenAccessLink | https://arxiv.org/abs/2302.08561 |
ParticipantIDs | arxiv_primary_2302_08561 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-16 |
PublicationDateYYYYMMDD | 2023-02-16 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8718022 |
SecondaryResourceType | preprint |
Snippet | Weighing the topological domain over which data can be represented and
analysed is a key strategy in many signal processing and machine learning
applications,... |
SourceID | arxiv |
SourceType | Open Access Repository |
Title | Topological Signal Processing over Weighted Simplicial Complexes |
URI | https://arxiv.org/abs/2302.08561 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA61Jy-iqNQnOXiNbp6b3BSxFkE9uOLeljwmUhCRtkp_vkl2RS9eM0MgXxLmkS8zCJ3VQB2PlSaBUU8EBUOs8Zw4mSnvNbPU54T-_YOaPYu7VrYjhH_-wtjFev7V1wd2y4vkH7Pz5BTk-GaDsUzZun1s-8fJUopr0P_VSz5mGfpjJKbbaGvw7vBVvx07aATvu-iy6RsRZDjw0_w1awz8_GQ3cOZQ4peSoYSQ5IXinU4Fzlf1Ddaw3EPN9Ka5npGhcQGxqqZEU-mkjDJUKqQ4z4PhKQgSTmuIVnPqYoyG-1wcrbLBKSmc8UoFZYHTqDjfR-MU-8ME4crEqIwRvMwhg7YgQCXgGUDUDg7QpCy3--hrU3QZia4gcfi_6Aht5q7pmXxM1TEarxafcJJs68qdFoC_AcVZei4 |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Signal+Processing+over+Weighted+Simplicial+Complexes&rft.au=Battiloro%2C+Claudio&rft.au=Sardellitti%2C+Stefania&rft.au=Barbarossa%2C+Sergio&rft.au=Di+Lorenzo%2C+Paolo&rft.date=2023-02-16&rft_id=info:doi/10.48550%2Farxiv.2302.08561&rft.externalDocID=2302_08561 |