On Kodaira dimension of almost complex 4-dimensional solvmanifolds without complex structures

The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact $4$-dimensional solvmanifolds without any integrable almost complex structure. According to the classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$, $\m...

Full description

Saved in:
Bibliographic Details
Main Authors Cattaneo, Andrea, Nannicini, Antonella, Tomassini, Adriano
Format Journal Article
LanguageEnglish
Published 25.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact $4$-dimensional solvmanifolds without any integrable almost complex structure. According to the classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$, $\mathfrak{nil}^4$ and $\mathfrak{r}_{4, \lambda, -(1 + \lambda)}$ with $-1 < \lambda < -\frac{1}{2}$. For the first solvmanifold we introduce special families of almost complex structures, compute the corresponding Kodaira dimension and show that it is no longer a deformation invariant. Moreover we prove Ricci flatness of the canonical connection for the almost K\"ahler structure. Regarding the other two manifolds we compute the Kodaira dimension for certain almost complex structures. Finally we construct a natural hypercomplex structure providing a twistorial description.
AbstractList The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact $4$-dimensional solvmanifolds without any integrable almost complex structure. According to the classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$, $\mathfrak{nil}^4$ and $\mathfrak{r}_{4, \lambda, -(1 + \lambda)}$ with $-1 < \lambda < -\frac{1}{2}$. For the first solvmanifold we introduce special families of almost complex structures, compute the corresponding Kodaira dimension and show that it is no longer a deformation invariant. Moreover we prove Ricci flatness of the canonical connection for the almost K\"ahler structure. Regarding the other two manifolds we compute the Kodaira dimension for certain almost complex structures. Finally we construct a natural hypercomplex structure providing a twistorial description.
Author Nannicini, Antonella
Cattaneo, Andrea
Tomassini, Adriano
Author_xml – sequence: 1
  givenname: Andrea
  surname: Cattaneo
  fullname: Cattaneo, Andrea
– sequence: 2
  givenname: Antonella
  surname: Nannicini
  fullname: Nannicini, Antonella
– sequence: 3
  givenname: Adriano
  surname: Tomassini
  fullname: Tomassini, Adriano
BackLink https://doi.org/10.48550/arXiv.2008.10881$$DView paper in arXiv
BookMark eNpFz8tOAyEYBWAWuqjVB-hKXmBGfgYoszSNt9ikm27NBBiIJFwamKn17Y3V6OoszslJvit0kXKyCK2AtExyTu5UOfljSwmRLRApYYHedgm_5lH5ovDoo03V54SzwyrEXCdscjwEe8Ks-WtVwDWHY1TJuxzGij_89J7n_22dymymudh6jS6dCtXe_OYS7R8f9pvnZrt7etncbxsl1tAI01PGgQJoa0bbCUE66zgVhFPHwTCpgRMQ2jJK-7VkRkCvAbg2WijTd0t0-3N79g2H4qMqn8O3czg7uy8YHlCG
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2008.10881
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2008_10881
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a671-6c92451211becde36603ef526052f51c48b15016be4229784c619b115bcb6ac93
IEDL.DBID GOX
IngestDate Mon Jan 08 05:39:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-6c92451211becde36603ef526052f51c48b15016be4229784c619b115bcb6ac93
OpenAccessLink https://arxiv.org/abs/2008.10881
ParticipantIDs arxiv_primary_2008_10881
PublicationCentury 2000
PublicationDate 2020-08-25
PublicationDateYYYYMMDD 2020-08-25
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-25
  day: 25
PublicationDecade 2020
PublicationYear 2020
Score 1.7791047
SecondaryResourceType preprint
Snippet The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact $4$-dimensional solvmanifolds...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Algebraic Geometry
Mathematics - Complex Variables
Mathematics - Differential Geometry
Title On Kodaira dimension of almost complex 4-dimensional solvmanifolds without complex structures
URI https://arxiv.org/abs/2008.10881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA61Jy-iqNQnOXgNZrN5dI9FrEXBXirsRSSTZKFQd6Uv-vOdZFfrxWsyBPIlw8yXTL4Qcme4t2ClYTwUFZOgFCuc4UhVtAHBpRcuVfm-6smbfC5V2SP05y2MXe7m21YfGFb3qdQxQ0dAfnMgRCzZepqW7eVkkuLq7Pd2mGOmpj9BYnxMjrrsjo7a5TghvVCfkvdpTV8ab-dLS30U048HVLSpqF18Nqs1TVXdYUcl--3FMXBPbKM2RdUs_IrG49Jms7dtZV83yJXPyGz8OHuYsO5XA2a1yZh2yHhUFFZD9HzIteZ5qFSkFaJSmZNDwBwt0xCkEEjxpEOKA5i3gQNtXZGfk37d1GFAqMy8AM1lbg3GZQ9DDQi88dLmRT4U8oIMEhYfX61wRfvlZILp8v-uK3IoIqfk6EHqmvRxPuEGA-8abhP633gHg-M
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Kodaira+dimension+of+almost+complex+4-dimensional+solvmanifolds+without+complex+structures&rft.au=Cattaneo%2C+Andrea&rft.au=Nannicini%2C+Antonella&rft.au=Tomassini%2C+Adriano&rft.date=2020-08-25&rft_id=info:doi/10.48550%2Farxiv.2008.10881&rft.externalDocID=2008_10881