On Kodaira dimension of almost complex 4-dimensional solvmanifolds without complex structures
The aim of this paper is to continue the study of Kodaira dimension for almost complex manifolds, focusing on the case of compact $4$-dimensional solvmanifolds without any integrable almost complex structure. According to the classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$, $\m...
Saved in:
Main Authors | , , |
---|---|
Format | Journal Article |
Language | English |
Published |
25.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this paper is to continue the study of Kodaira dimension for
almost complex manifolds, focusing on the case of compact $4$-dimensional
solvmanifolds without any integrable almost complex structure. According to the
classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$,
$\mathfrak{nil}^4$ and $\mathfrak{r}_{4, \lambda, -(1 + \lambda)}$ with $-1 <
\lambda < -\frac{1}{2}$. For the first solvmanifold we introduce special
families of almost complex structures, compute the corresponding Kodaira
dimension and show that it is no longer a deformation invariant. Moreover we
prove Ricci flatness of the canonical connection for the almost K\"ahler
structure. Regarding the other two manifolds we compute the Kodaira dimension
for certain almost complex structures. Finally we construct a natural
hypercomplex structure providing a twistorial description. |
---|---|
AbstractList | The aim of this paper is to continue the study of Kodaira dimension for
almost complex manifolds, focusing on the case of compact $4$-dimensional
solvmanifolds without any integrable almost complex structure. According to the
classification theory we consider: $\mathfrak{r}\mathfrak{r}_{3, -1}$,
$\mathfrak{nil}^4$ and $\mathfrak{r}_{4, \lambda, -(1 + \lambda)}$ with $-1 <
\lambda < -\frac{1}{2}$. For the first solvmanifold we introduce special
families of almost complex structures, compute the corresponding Kodaira
dimension and show that it is no longer a deformation invariant. Moreover we
prove Ricci flatness of the canonical connection for the almost K\"ahler
structure. Regarding the other two manifolds we compute the Kodaira dimension
for certain almost complex structures. Finally we construct a natural
hypercomplex structure providing a twistorial description. |
Author | Nannicini, Antonella Cattaneo, Andrea Tomassini, Adriano |
Author_xml | – sequence: 1 givenname: Andrea surname: Cattaneo fullname: Cattaneo, Andrea – sequence: 2 givenname: Antonella surname: Nannicini fullname: Nannicini, Antonella – sequence: 3 givenname: Adriano surname: Tomassini fullname: Tomassini, Adriano |
BackLink | https://doi.org/10.48550/arXiv.2008.10881$$DView paper in arXiv |
BookMark | eNpFz8tOAyEYBWAWuqjVB-hKXmBGfgYoszSNt9ikm27NBBiIJFwamKn17Y3V6OoszslJvit0kXKyCK2AtExyTu5UOfljSwmRLRApYYHedgm_5lH5ovDoo03V54SzwyrEXCdscjwEe8Ks-WtVwDWHY1TJuxzGij_89J7n_22dymymudh6jS6dCtXe_OYS7R8f9pvnZrt7etncbxsl1tAI01PGgQJoa0bbCUE66zgVhFPHwTCpgRMQ2jJK-7VkRkCvAbg2WijTd0t0-3N79g2H4qMqn8O3czg7uy8YHlCG |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2008.10881 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2008_10881 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a671-6c92451211becde36603ef526052f51c48b15016be4229784c619b115bcb6ac93 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:39:11 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a671-6c92451211becde36603ef526052f51c48b15016be4229784c619b115bcb6ac93 |
OpenAccessLink | https://arxiv.org/abs/2008.10881 |
ParticipantIDs | arxiv_primary_2008_10881 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-25 |
PublicationDateYYYYMMDD | 2020-08-25 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
Score | 1.7791047 |
SecondaryResourceType | preprint |
Snippet | The aim of this paper is to continue the study of Kodaira dimension for
almost complex manifolds, focusing on the case of compact $4$-dimensional
solvmanifolds... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Algebraic Geometry Mathematics - Complex Variables Mathematics - Differential Geometry |
Title | On Kodaira dimension of almost complex 4-dimensional solvmanifolds without complex structures |
URI | https://arxiv.org/abs/2008.10881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA61Jy-iqNQnOXgNZrN5dI9FrEXBXirsRSSTZKFQd6Uv-vOdZFfrxWsyBPIlw8yXTL4Qcme4t2ClYTwUFZOgFCuc4UhVtAHBpRcuVfm-6smbfC5V2SP05y2MXe7m21YfGFb3qdQxQ0dAfnMgRCzZepqW7eVkkuLq7Pd2mGOmpj9BYnxMjrrsjo7a5TghvVCfkvdpTV8ab-dLS30U048HVLSpqF18Nqs1TVXdYUcl--3FMXBPbKM2RdUs_IrG49Jms7dtZV83yJXPyGz8OHuYsO5XA2a1yZh2yHhUFFZD9HzIteZ5qFSkFaJSmZNDwBwt0xCkEEjxpEOKA5i3gQNtXZGfk37d1GFAqMy8AM1lbg3GZQ9DDQi88dLmRT4U8oIMEhYfX61wRfvlZILp8v-uK3IoIqfk6EHqmvRxPuEGA-8abhP633gHg-M |
link.rule.ids | 228,230,783,888 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Kodaira+dimension+of+almost+complex+4-dimensional+solvmanifolds+without+complex+structures&rft.au=Cattaneo%2C+Andrea&rft.au=Nannicini%2C+Antonella&rft.au=Tomassini%2C+Adriano&rft.date=2020-08-25&rft_id=info:doi/10.48550%2Farxiv.2008.10881&rft.externalDocID=2008_10881 |