Structured Differential Learning for Automatic Threshold Setting

We introduce a technique that can automatically tune the parameters of a rule-based computer vision system comprised of thresholds, combinational logic, and time constants. This lets us retain the flexibility and perspicacity of a conventionally structured system while allowing us to perform approxi...

Full description

Saved in:
Bibliographic Details
Main Authors Connell, Jonathan, Herta, Benjamin
Format Journal Article
LanguageEnglish
Published 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a technique that can automatically tune the parameters of a rule-based computer vision system comprised of thresholds, combinational logic, and time constants. This lets us retain the flexibility and perspicacity of a conventionally structured system while allowing us to perform approximate gradient descent using labeled data. While this is only a heuristic procedure, as far as we are aware there is no other efficient technique for tuning such systems. We describe the components of the system and the associated supervised learning mechanism. We also demonstrate the utility of the algorithm by comparing its performance versus hand tuning for an automotive headlight controller. Despite having over 100 parameters, the method is able to profitably adjust the system values given just the desired output for a number of videos.
AbstractList We introduce a technique that can automatically tune the parameters of a rule-based computer vision system comprised of thresholds, combinational logic, and time constants. This lets us retain the flexibility and perspicacity of a conventionally structured system while allowing us to perform approximate gradient descent using labeled data. While this is only a heuristic procedure, as far as we are aware there is no other efficient technique for tuning such systems. We describe the components of the system and the associated supervised learning mechanism. We also demonstrate the utility of the algorithm by comparing its performance versus hand tuning for an automotive headlight controller. Despite having over 100 parameters, the method is able to profitably adjust the system values given just the desired output for a number of videos.
Author Herta, Benjamin
Connell, Jonathan
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Connell
  fullname: Connell, Jonathan
– sequence: 2
  givenname: Benjamin
  surname: Herta
  fullname: Herta, Benjamin
BackLink https://doi.org/10.48550/arXiv.1808.00361$$DView paper in arXiv
BookMark eNotz71OwzAUhmEPMEDhApjwDSQcx_HfRlV-pUgMzR6Z-JhaSh106iC4e6AwfcMrfdJzzk7ynJGxKwF1a5WCG0-f6aMWFmwNILU4Y7fbQstYFsLA71KMSJhL8hPv0FNO-Y3Hmfh6KfPelzTyfkd42M1T4Fss5adfsNPopwNe_u-K9Q_3_eap6l4enzfrrvLaiEppK1twLqKN4B3q0Yaggg5yFEYB6ldQykvnVBTW6UYYBNO4pm0MGpAoV-z67_ZIGN4p7T19Db-U4UiR38V8ROg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.1808.00361
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1808_00361
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a671-56834099fe8f0a9e6c8dd5d6d3c1750e6b055a3995f1896217e07292427e703e3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-56834099fe8f0a9e6c8dd5d6d3c1750e6b055a3995f1896217e07292427e703e3
Notes IBM Research Report RC25144
OpenAccessLink https://arxiv.org/abs/1808.00361
ParticipantIDs arxiv_primary_1808_00361
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationYear 2018
Score 1.7077888
SecondaryResourceType preprint
Snippet We introduce a technique that can automatically tune the parameters of a rule-based computer vision system comprised of thresholds, combinational logic, and...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computer Vision and Pattern Recognition
Computer Science - Learning
Statistics - Machine Learning
Title Structured Differential Learning for Automatic Threshold Setting
URI https://arxiv.org/abs/1808.00361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NS8QwEB3WPXkRF5X1kxy8FtOvNL3t4rougnrYCr2VJDMVQVT2Q_z5TtKKXryVNpe8Et488uYNwGWhkYtgh5FpWelkGiU_aW-msrHxgwis843C9w9q8ZTd1Xk9APHTC2NWXy-fXT6wXV_FOlgdU69vdpLEW7ZuH-vucjJEcfXrf9dxjRle_SGJ-T7s9dWdmHa_YwQDejuAyTJktG5XhGLWzyPhc_Uq-mzTZ8GFo5huN-8hPlVUDO_a3wqJJQVX8iFU85vqehH1gwsio4o4ypVOWTaVLelWmpKU04g5Kkwdk7UkZWWeG99T2sa6VCwKyOd3M1kWxAeQ0iMYsvanMQiud1KSzNmsVDNXokVMnOfdEMOTlccwDtttPrpsisYj0QQkTv7_dAq7zPu687GdwZBRoHPm1o29CAB_A0Xud-o
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+Differential+Learning+for+Automatic+Threshold+Setting&rft.au=Connell%2C+Jonathan&rft.au=Herta%2C+Benjamin&rft.date=2018-08-01&rft_id=info:doi/10.48550%2Farxiv.1808.00361&rft.externalDocID=1808_00361