Higher Arithmetic Intersection Theory

We give a new definition of higher arithmetic Chow groups for smooth projective varieties defined over a number field, which is similar to Gillet and Soul\'e's definition of arithmetic Chow groups. We also give a compact description of the intersection theory of such groups. A consequence...

Full description

Saved in:
Bibliographic Details
Main Authors Burgos-Gil, José Ignacio, Goswami, Souvik
Format Journal Article
LanguageEnglish
Published 29.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We give a new definition of higher arithmetic Chow groups for smooth projective varieties defined over a number field, which is similar to Gillet and Soul\'e's definition of arithmetic Chow groups. We also give a compact description of the intersection theory of such groups. A consequence of this theory is the definition of a height pairing between two higher algebraic cycles, of complementary dimensions, whose real regulator class is zero. This description agrees with Beilinson's height pairing for the classical arithmetic Chow groups. We also give examples of the higher arithmetic intersection pairing in dimension zero that, assuming a conjecture by Milnor on the independence of the values of the dilogarithm, are non zero.
AbstractList We give a new definition of higher arithmetic Chow groups for smooth projective varieties defined over a number field, which is similar to Gillet and Soul\'e's definition of arithmetic Chow groups. We also give a compact description of the intersection theory of such groups. A consequence of this theory is the definition of a height pairing between two higher algebraic cycles, of complementary dimensions, whose real regulator class is zero. This description agrees with Beilinson's height pairing for the classical arithmetic Chow groups. We also give examples of the higher arithmetic intersection pairing in dimension zero that, assuming a conjecture by Milnor on the independence of the values of the dilogarithm, are non zero.
Author Burgos-Gil, José Ignacio
Goswami, Souvik
Author_xml – sequence: 1
  givenname: José Ignacio
  surname: Burgos-Gil
  fullname: Burgos-Gil, José Ignacio
– sequence: 2
  givenname: Souvik
  surname: Goswami
  fullname: Goswami, Souvik
BackLink https://doi.org/10.48550/arXiv.1712.10150$$DView paper in arXiv
BookMark eNotzjsLwjAUBeAMOvj6AU52cWy9N2madBTxBYJL95LGWxuwrcQi-u99TgcOh8M3ZL2mbYixKUIUaylhYfzD3SNUyCMElDBg8507V-SDpXddVVPnbLBvOvI3sp1rmyCrqPXPMeuX5nKjyT9HLNuss9UuPBy3-9XyEJpEQUgnaxNNRDq2nISk4l2TNALAcGV4oZFDzFV6ApUg17EqS6EMSMTivU3FiM1-t19nfvWuNv6Zf7z51ytelfY7oA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1712.10150
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1712_10150
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a670-edcc68eee84c2e35eba67e5a300a27a2b81204279d07612847ff37a0511beba93
IEDL.DBID GOX
IngestDate Mon Jan 08 05:45:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a670-edcc68eee84c2e35eba67e5a300a27a2b81204279d07612847ff37a0511beba93
OpenAccessLink https://arxiv.org/abs/1712.10150
ParticipantIDs arxiv_primary_1712_10150
PublicationCentury 2000
PublicationDate 2017-12-29
PublicationDateYYYYMMDD 2017-12-29
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-29
  day: 29
PublicationDecade 2010
PublicationYear 2017
Score 1.687644
SecondaryResourceType preprint
Snippet We give a new definition of higher arithmetic Chow groups for smooth projective varieties defined over a number field, which is similar to Gillet and Soul\'e's...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Algebraic Geometry
Mathematics - K-Theory and Homology
Mathematics - Number Theory
Title Higher Arithmetic Intersection Theory
URI https://arxiv.org/abs/1712.10150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED6VTiyIClB5KgOMFvE5cZwRoZYKCViKlC2y47PoQIXagPj59SMIFtbzLZ-t03d3vgfAdU2InArDyNaCFdJaZjBXzIkK0bhcGht6h5-e5eK1eGzKZgTZTy-M3nyvvtJ8YLO95RXHEF-GoHwPMZRsPbw06XMyjuIa9H_1vI8ZRX9IYn4IB4N3l92l55jAiNZHcJNqKbx01b-9h6bBLObhtrEKap2l9vhjWM5ny_sFG7YTMC2r3GPrOqmISBUdkijJeDGVWuS5xkqj8cwZ9ljUNmQKAgk4j197G-DG69biBMY-wKcpZFY6ybXjVElTiA4VceucEsoEm3DiFKYRU_uRBlC0AW4b4Z79f3QO-xgoiCPD-gLG_eaTLj2B9uYq3uIOs7RwIQ
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+Arithmetic+Intersection+Theory&rft.au=Burgos-Gil%2C+Jos%C3%A9+Ignacio&rft.au=Goswami%2C+Souvik&rft.date=2017-12-29&rft_id=info:doi/10.48550%2Farxiv.1712.10150&rft.externalDocID=1712_10150