Continual learning autoencoder training for a particle-in-cell simulation via streaming

The upcoming exascale era will provide a new generation of physics simulations. These simulations will have a high spatiotemporal resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible. Therefore, we need to r...

Full description

Saved in:
Bibliographic Details
Main Authors Stiller, Patrick, Makdani, Varun, Pöschel, Franz, Pausch, Richard, Debus, Alexander, Bussmann, Michael, Hoffmann, Nico
Format Journal Article
LanguageEnglish
Published 09.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The upcoming exascale era will provide a new generation of physics simulations. These simulations will have a high spatiotemporal resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible. Therefore, we need to rethink the training of machine learning models for simulations for the upcoming exascale era. This work presents an approach that trains a neural network concurrently to a running simulation without storing data on a disk. The training pipeline accesses the training data by in-memory streaming. Furthermore, we apply methods from the domain of continual learning to enhance the generalization of the model. We tested our pipeline on the training of a 3d autoencoder trained concurrently to laser wakefield acceleration particle-in-cell simulation. Furthermore, we experimented with various continual learning methods and their effect on the generalization.
AbstractList The upcoming exascale era will provide a new generation of physics simulations. These simulations will have a high spatiotemporal resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible. Therefore, we need to rethink the training of machine learning models for simulations for the upcoming exascale era. This work presents an approach that trains a neural network concurrently to a running simulation without storing data on a disk. The training pipeline accesses the training data by in-memory streaming. Furthermore, we apply methods from the domain of continual learning to enhance the generalization of the model. We tested our pipeline on the training of a 3d autoencoder trained concurrently to laser wakefield acceleration particle-in-cell simulation. Furthermore, we experimented with various continual learning methods and their effect on the generalization.
Author Hoffmann, Nico
Bussmann, Michael
Makdani, Varun
Pöschel, Franz
Debus, Alexander
Stiller, Patrick
Pausch, Richard
Author_xml – sequence: 1
  givenname: Patrick
  surname: Stiller
  fullname: Stiller, Patrick
– sequence: 2
  givenname: Varun
  surname: Makdani
  fullname: Makdani, Varun
– sequence: 3
  givenname: Franz
  surname: Pöschel
  fullname: Pöschel, Franz
– sequence: 4
  givenname: Richard
  surname: Pausch
  fullname: Pausch, Richard
– sequence: 5
  givenname: Alexander
  surname: Debus
  fullname: Debus, Alexander
– sequence: 6
  givenname: Michael
  surname: Bussmann
  fullname: Bussmann, Michael
– sequence: 7
  givenname: Nico
  surname: Hoffmann
  fullname: Hoffmann, Nico
BackLink https://doi.org/10.48550/arXiv.2211.04770$$DView paper in arXiv
BookMark eNotz8tKxDAYBeAsdKGjD-DKvEBrmubSLqV4g4HZDLgsf5M_EkiTIU0HfXu1ujpwOBz4rslFTBEJuWtYLTop2QPkT3-uOW-amgmt2RV5H1IsPq4QaEDI0ccPCmtJGE2ymGnJ4LfSpUyBniAXbwJWPlYGQ6CLn9cAxadIzx7oUjLC_LO_IZcOwoK3_7kjx-en4_Ba7Q8vb8PjvgKlWWUBBCrWi0k5q7QE3aupk4y1kxbGQcNlrxoLpueAk-HccNmCEwa5sR1T7Y7c_91usvGU_Qz5a_wVjpuw_QYx7U87
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2211.04770
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2211_04770
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a670-daa4e6094b6fd675a796b85003b74cfa125961dac92aebc22c253af4ce2cd8063
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a670-daa4e6094b6fd675a796b85003b74cfa125961dac92aebc22c253af4ce2cd8063
OpenAccessLink https://arxiv.org/abs/2211.04770
ParticipantIDs arxiv_primary_2211_04770
PublicationCentury 2000
PublicationDate 2022-11-09
PublicationDateYYYYMMDD 2022-11-09
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-09
  day: 09
PublicationDecade 2020
PublicationYear 2022
Score 1.8600453
SecondaryResourceType preprint
Snippet The upcoming exascale era will provide a new generation of physics simulations. These simulations will have a high spatiotemporal resolution, which will impact...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Artificial Intelligence
Computer Science - Learning
Physics - High Energy Physics - Theory
Title Continual learning autoencoder training for a particle-in-cell simulation via streaming
URI https://arxiv.org/abs/2211.04770
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVKJxYEAlQ-5YHVgrqOnYwIUSokYCkiW3R2zihD0ypNq_58zokrWFjt8_Is696zfe8YuzPOo9MOBSAkJFDGSpCMIKniNaSOFk0gFDi_vevZp3rNk3zA-L4WBppdte39ge36XsrgsKmMIVF-IGX4svXykfePk50VV4z_jSOO2Q39SRLTY3YU2R1_7LfjhA2wPmVfwQGqCtafPPZo-OawaZfBQrLEhu-7NHDijxz4Km6mqGoRrtX5ulrEHlt8WwEP1R2woPgzNp8-z59mIvYzEKDNgygBFGqSU1b7kng6mEzbNKFjZY1yHohqZHpcgsskoHVSOpkQUsqhdGVKVOKcDetljSPGEVLvgZQDelQ-gZREj1dIiPgJJW13wUYdCsWqt6woAkBFB9Dl_1NX7FCGz_3h0jS7ZsO22eANpdzW3na4_wDDO4RY
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continual+learning+autoencoder+training+for+a+particle-in-cell+simulation+via+streaming&rft.au=Stiller%2C+Patrick&rft.au=Makdani%2C+Varun&rft.au=P%C3%B6schel%2C+Franz&rft.au=Pausch%2C+Richard&rft.date=2022-11-09&rft_id=info:doi/10.48550%2Farxiv.2211.04770&rft.externalDocID=2211_04770