Indirect Gaussian Graph Learning beyond Gaussianity

This paper studies how to capture dependency graph structures from real data which may not be Gaussian. Starting from marginal loss functions not necessarily derived from probability distributions, we utilize an additive over-parametrization with shrinkage to incorporate variable dependencies into t...

Full description

Saved in:
Bibliographic Details
Main Authors She, Yiyuan, Tang, Shao, Zhang, Qiaoya
Format Journal Article
LanguageEnglish
Published 08.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies how to capture dependency graph structures from real data which may not be Gaussian. Starting from marginal loss functions not necessarily derived from probability distributions, we utilize an additive over-parametrization with shrinkage to incorporate variable dependencies into the criterion. An iterative Gaussian graph learning algorithm is proposed with ease in implementation. Statistical analysis shows that the estimators achieve satisfactory accuracy with the error measured in terms of a proper Bregman divergence. Real-life examples in different settings are given to demonstrate the efficacy of the proposed methodology.
AbstractList This paper studies how to capture dependency graph structures from real data which may not be Gaussian. Starting from marginal loss functions not necessarily derived from probability distributions, we utilize an additive over-parametrization with shrinkage to incorporate variable dependencies into the criterion. An iterative Gaussian graph learning algorithm is proposed with ease in implementation. Statistical analysis shows that the estimators achieve satisfactory accuracy with the error measured in terms of a proper Bregman divergence. Real-life examples in different settings are given to demonstrate the efficacy of the proposed methodology.
Author Tang, Shao
Zhang, Qiaoya
She, Yiyuan
Author_xml – sequence: 1
  givenname: Yiyuan
  surname: She
  fullname: She, Yiyuan
– sequence: 2
  givenname: Shao
  surname: Tang
  fullname: Tang, Shao
– sequence: 3
  givenname: Qiaoya
  surname: Zhang
  fullname: Zhang, Qiaoya
BackLink https://doi.org/10.48550/arXiv.1610.02590$$DView paper in arXiv
BookMark eNo9jstuwjAURL2gi0L7AV01PxDqR66TLBFqA1KkbthH1_Y1WCpO5NCq-ftSQKxGmpHOnDmbxT4SYy-CL4sKgL9h-g0_S6HPBZdQ80emttGFRPaUNfg9jgFj1iQcDllLmGKI-8zQ1Ed3n8NpemIPHr9Ger7lgu0-3nfrTd5-Ntv1qs1RlzxHX5vCylIYsu78RUpZqkF6aYrKaoccgBxILTxZJWppwRruBehScTKVWrDXK_Zi3Q0pHDFN3b99d7FXf7_0QS8
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID EPD
GOX
DOI 10.48550/arxiv.1610.02590
DatabaseName arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1610_02590
GroupedDBID EPD
GOX
ID FETCH-LOGICAL-a670-af9b4c271becd590e33ce952f2b48c6da055ed5261fec3192c5cb0f156730eb83
IEDL.DBID GOX
IngestDate Mon Jan 08 05:48:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a670-af9b4c271becd590e33ce952f2b48c6da055ed5261fec3192c5cb0f156730eb83
OpenAccessLink https://arxiv.org/abs/1610.02590
ParticipantIDs arxiv_primary_1610_02590
PublicationCentury 2000
PublicationDate 2016-10-08
PublicationDateYYYYMMDD 2016-10-08
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-08
  day: 08
PublicationDecade 2010
PublicationYear 2016
Score 1.64566
SecondaryResourceType preprint
Snippet This paper studies how to capture dependency graph structures from real data which may not be Gaussian. Starting from marginal loss functions not necessarily...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Statistics - Machine Learning
Statistics - Methodology
Title Indirect Gaussian Graph Learning beyond Gaussianity
URI https://arxiv.org/abs/1610.02590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07SwQxEA7nVTaiqJxPUthGY16bLUW8PQW1OWG7JZOH2BxyD_HnO5usj8Y2M0VmkvB9QzJfCLlwxkpfCWDeBWDKBMms9YrhcvOUQAcIfe_w45OZvaiHVrcjQr97Ydzy8-2j6APD6grpCL9EVK6xKN8Son-y1Ty35XIyS3EN_r9-yDHz0B-QmO6SnYHd0ZuyHHtkFBf7RN4vCnDQxm1WfdMibXqZaDpom75SyG0kP2YkxgdkPr2b387Y8FcBc6bizKUalBfVNaYk4DSilD7WWiQBynoTHNc6Bo3lSooed73w2gNPWDzhCYtg5SEZY7kfJ4RGjKWqg45OagVcAAIoVBJ5irDOSn5EJjnC7r3IUXR98F0O_vh_0wnZRqg35fXaKRmvl5t4hnC6hvOc0y-LNXTp
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Gaussian+Graph+Learning+beyond+Gaussianity&rft.au=She%2C+Yiyuan&rft.au=Tang%2C+Shao&rft.au=Zhang%2C+Qiaoya&rft.date=2016-10-08&rft_id=info:doi/10.48550%2Farxiv.1610.02590&rft.externalDocID=1610_02590