Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization

Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental inv...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 282; no. 1808; p. 20150476
Main Authors Butler, Aodhán D., Cunningham, John A., Budd, Graham E., Donoghue, Philip C. J.
Format Journal Article
LanguageEnglish
Published England The Royal Society 07.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
AbstractList Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia , examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of 1 mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.
Author Budd, Graham E.
Butler, Aodhán D.
Donoghue, Philip C. J.
Cunningham, John A.
AuthorAffiliation 2 Department of Earth Sciences, Palaeobiology Programme , Uppsala University , Villavägen 16, 75236 Uppsala , Sweden
3 Department of Palaeobiology and Nordic Centre for Earth Evolution, Swedish Museum of Natural History, 10405 Stockholm , Sweden
1 School of Earth Sciences , University of Bristol , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , UK
AuthorAffiliation_xml – name: 3 Department of Palaeobiology and Nordic Centre for Earth Evolution, Swedish Museum of Natural History, 10405 Stockholm , Sweden
– name: 2 Department of Earth Sciences, Palaeobiology Programme , Uppsala University , Villavägen 16, 75236 Uppsala , Sweden
– name: 1 School of Earth Sciences , University of Bristol , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ , UK
Author_xml – sequence: 1
  givenname: Aodhán D.
  orcidid: 0000-0002-1906-0009
  surname: Butler
  fullname: Butler, Aodhán D.
  email: aodhan.butler@geo.uu.se
  organization: School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
– sequence: 2
  givenname: John A.
  surname: Cunningham
  fullname: Cunningham, John A.
  organization: School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Palaeobiology and Nordic Centre for Earth Evolution, Swedish Museum of Natural History, 10405 Stockholm, Sweden
– sequence: 3
  givenname: Graham E.
  surname: Budd
  fullname: Budd, Graham E.
  organization: Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
– sequence: 4
  givenname: Philip C. J.
  surname: Donoghue
  fullname: Donoghue, Philip C. J.
  email: phil.donoghue@bristol.ac.uk
  organization: School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25972468$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1464$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259114$$DView record from Swedish Publication Index
BookMark eNqNkstv1DAQxiNURB9w5YhyRIJdxo5fuSAtpTykSiBeV8vJTnZdEntrJwvbvx6nu0V0pQInK_bv-zLzzRxnB847zLLHBKYESvUixFU1pUD4FJgU97IjwiSZ0JKzg-wISkEninF6mB3HeAEAJVf8QXZIeSkpE-ooc2c_Vxhsh643bd6b1dI7321y3-Sz0GNnTR5wjaaNeb_EPPgWxzd0c79A54eYd7YOvsKYW5d3OLemt26Rz7E2m9y4ed74GG1rr9K9dw-z-03ywke78yT7-ubsy-m7yfmHt-9PZ-cTI0TRTypJoQFeYlVBiUZIbCoAKedEYUGqupSFgoo0goNpQMmGQl00lQBFJcqmLk6y51vf-ANXQ6VXqUUTNtobq1_bbzPtw0IPg05BEMIS_uzfuAudJkyM9MstndDUcZ2yC6a9Jbr94uxSL_xaM8a5IpAMnu4Mgr8cMPa6s7HGtjUOU6SaKFCiZOJ_UKEITX3LEX3yZ1m_67kZdgLYFkgDizFgo2vbX48lVWlbTUCPO6XHndLjTulxp5Jsuie7cb5TUGwFwW_SkH1tsd_oCz8Elz7vVn3_m-rT54-v1lRRO4ajQRUEOBfA9JVd7awU1TbGAa_z27Pf_9svqyoGbQ
CitedBy_id crossref_primary_10_1111_pala_12269
crossref_primary_10_1002_spp2_1589
crossref_primary_10_1038_521263d
crossref_primary_10_1098_rspb_2023_1803
crossref_primary_10_1111_pala_12668
crossref_primary_10_1038_s41467_019_13882_z
crossref_primary_10_1098_rsos_160420
crossref_primary_10_1139_cjes_2017_0237
crossref_primary_10_1111_brv_12806
crossref_primary_10_1098_rsos_172411
crossref_primary_10_1002_bies_201900243
crossref_primary_10_1016_j_meegid_2017_09_006
crossref_primary_10_1016_j_palaeo_2020_110079
crossref_primary_10_1098_rspb_2019_2370
crossref_primary_10_1002_aps3_11444
crossref_primary_10_1111_let_12455
crossref_primary_10_1186_s13358_024_00324_7
crossref_primary_10_1016_j_geobios_2019_04_002
crossref_primary_10_1080_03115518_2022_2048267
crossref_primary_10_1098_rsbl_2022_0497
crossref_primary_10_1111_1755_6724_12641
crossref_primary_10_1111_pala_12219
crossref_primary_10_1093_nsr_nwy057
crossref_primary_10_1111_pala_12617
crossref_primary_10_1016_j_earscirev_2019_04_012
crossref_primary_10_1016_j_jsames_2020_102609
crossref_primary_10_1038_s43247_023_00981_5
crossref_primary_10_2110_palo_2017_038
crossref_primary_10_1016_j_cretres_2021_105068
crossref_primary_10_1016_j_palaeo_2016_02_025
crossref_primary_10_1038_s43247_024_01983_7
crossref_primary_10_1080_11035897_2016_1260051
crossref_primary_10_1111_pala_12246
crossref_primary_10_2110_palo_2017_083
crossref_primary_10_1007_s12542_022_00625_7
crossref_primary_10_1002_ece3_7120
crossref_primary_10_1016_j_precamres_2019_105408
crossref_primary_10_3389_fmicb_2023_1225411
crossref_primary_10_1016_j_earscirev_2020_103409
crossref_primary_10_1111_gbi_12480
crossref_primary_10_1098_rsos_220115
crossref_primary_10_1098_rsos_191350
crossref_primary_10_7717_peerj_13869
crossref_primary_10_1134_S0031030118020053
crossref_primary_10_1002_bies_202200167
crossref_primary_10_1016_j_palaeo_2015_12_006
crossref_primary_10_1038_s41598_024_55822_y
crossref_primary_10_1098_rspb_2018_0051
crossref_primary_10_1098_rstb_2015_0038
crossref_primary_10_1111_pala_12237
crossref_primary_10_1111_pala_12314
crossref_primary_10_1111_pala_12316
crossref_primary_10_1111_gbi_12573
crossref_primary_10_1111_gbi_12370
crossref_primary_10_1098_rsfs_2020_0015
crossref_primary_10_1098_rsos_192111
crossref_primary_10_1038_s41467_024_48400_3
crossref_primary_10_1126_sciadv_adr0896
crossref_primary_10_2110_palo_2020_014
crossref_primary_10_1111_let_12186
crossref_primary_10_1002_bies_201700167
Cites_doi 10.1186/s12862-014-0222-z
10.26879/424
10.1017/S0022336000022897
10.1016/S0016-6995(97)80056-3
10.1111/j.1502-3931.2011.00264.x
10.1098/rspb.2011.2064
10.1002/bies.200800128
10.1073/pnas.0810106105
10.1111/j.1475-4983.2008.00834.x
10.1073/pnas.0601536103
10.1130/G22526.1
10.1371/journal.pone.0042582
10.1371/journal.pone.0070741
10.1126/science.1206375
10.2307/3515093
10.1080/14772019.2010.492644
10.1666/0094-8373(2002)028<0155:LGATIO>2.0.CO;2
10.1038/346171a0
10.1038/nature11495
10.1038/ncomms4641
10.1371/journal.pone.0088583
10.1016/S0016-7037(99)00087-3
10.1111/j.1502-3931.1996.tb01831.x
10.1098/rspb.2013.0071
10.1111/ede.12028
10.1098/rspb.2010.1641
10.1130/0091-7613(1996)024<0787:ROMMIT>2.3.CO;2
10.1111/pala.12155
10.1146/annurev.earth.31.100901.144746
10.1038/nature08745
10.4202/app.2008.0110
10.1073/pnas.1115244109
10.1111/j.1475-4983.2008.00828.x
10.1093/icb/43.1.166
10.1371/journal.pone.0032934
10.1098/rspb.2004.3006
10.1111/j.1502-3931.2007.00013.x
10.1144/gsjgs.153.5.0665
10.1371/journal.pone.0052200
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
5PM
ADTPV
AOWAS
D8T
ZZAVC
DF2
DOI 10.1098/rspb.2015.0476
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Ecology Abstracts
CrossRef


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
DocumentTitleAlternate Experimental taphonomy of Artemia
EISSN 1471-2954
EndPage 20150476
ExternalDocumentID oai_DiVA_org_uu_259114
oai_DiVA_org_nrm_1464
PMC4455810
25972468
10_1098_rspb_2015_0476
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29P
2WC
36Y
4.4
5RE
85S
AACGO
AANCE
ABBHK
ABPLY
ABPTK
ABTLG
ACIWK
ACNCT
ACPRK
ACQIA
ADBBV
ADIYS
ADULT
ADZLD
AEUPB
AEXZC
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DCCCD
DIK
DNJUQ
DOOOF
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HYE
HZ~
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
O9-
OK1
OP1
RHF
RPM
RRY
SA0
TR2
V1E
W8F
~02
AAYXX
ABXSQ
ACHIC
ADQXQ
ALMYZ
AQVQM
CITATION
H13
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SN
C1K
5PM
.55
.GJ
0VX
3O-
53G
8WZ
A6W
AANZV
ABEFU
ABIEJ
ACMKX
ACRPL
ADNMO
ADTPV
AGPVY
AGQPQ
AJZGM
AOWAS
AS~
BGBPD
CAG
COF
D8T
HGD
HQ3
HTVGU
MVM
ROL
WOQ
X7M
ZXP
ZZAVC
DF2
ID FETCH-LOGICAL-a663t-b720f059ebb09ea67efb0077d18e31bc97380b1f650af087f20c3fb60827e7fc3
ISSN 0962-8452
1471-2954
IngestDate Thu Aug 21 07:26:37 EDT 2025
Thu Aug 21 06:29:46 EDT 2025
Thu Aug 21 18:08:28 EDT 2025
Fri Jul 11 08:20:58 EDT 2025
Fri Jul 11 04:22:46 EDT 2025
Wed Feb 19 02:00:31 EST 2025
Tue Jul 01 02:06:56 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Jan 17 02:37:23 EST 2024
Tue May 24 16:18:32 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1808
Keywords Cambrian explosion
taphonomy
bilateria
metazoa
palaeobiology
Language English
License open-access: © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a663t-b720f059ebb09ea67efb0077d18e31bc97380b1f650af087f20c3fb60827e7fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1906-0009
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4455810
PMID 25972468
PQID 1681260870
PQPubID 23479
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_nrm_1464
royalsociety_journals_RSPBv282i1808_0831055604_zip_rspb_282_issue_1808_rspb_2015_0476_rspb_2015_0476
proquest_miscellaneous_1681260870
crossref_citationtrail_10_1098_rspb_2015_0476
royalsociety_journals_10_1098_rspb_2015_0476
proquest_miscellaneous_1808694610
pubmed_primary_25972468
swepub_primary_oai_DiVA_org_uu_259114
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4455810
crossref_primary_10_1098_rspb_2015_0476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-07
PublicationDateYYYYMMDD 2015-06-07
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Proceedings of the Royal Society. B, Biological sciences
PublicationTitleAbbrev Proc. R. Soc. B
PublicationTitleAlternate Proc Biol Sci
PublicationYear 2015
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References Gould SJ (e_1_3_6_2_2) 1989
e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
e_1_3_6_19_2
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_41_2
e_1_3_6_40_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
e_1_3_6_6_2
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_24_2
e_1_3_6_25_2
20947532 - Proc Biol Sci. 2011 Apr 22;278(1709):1150-7
23060195 - Nature. 2012 Oct 11;490(7419):258-61
15817437 - Proc Biol Sci. 2005 Mar 22;272(1563):627-32
22431989 - PLoS One. 2012;7(3):e32934
23446532 - Proc Biol Sci. 2013 Apr 22;280(1757):20130071
22116879 - Science. 2011 Nov 25;334(6059):1091-7
22870334 - PLoS One. 2012;7(8):e42582
25472836 - BMC Evol Biol. 2014;14:222
22158954 - Proc Biol Sci. 2012 May 7;279(1734):1857-64
24785191 - Nat Commun. 2014;5:3641
24533118 - PLoS One. 2014;9(2):e88583
20118914 - Nature. 2010 Feb 11;463(7282):797-800
22307616 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1589-94
16571655 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5846-51
21680421 - Integr Comp Biol. 2003 Feb;43(1):166-77
23809699 - Evol Dev. 2013 Jul-Aug;15(4):243-56
23950993 - PLoS One. 2013;8(8):e70741
23300612 - PLoS One. 2012;7(12):e52200
19204990 - Bioessays. 2009 Feb;31(2):178-89
19047625 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19360-5
References_xml – ident: e_1_3_6_12_2
  doi: 10.1186/s12862-014-0222-z
– ident: e_1_3_6_41_2
  doi: 10.26879/424
– ident: e_1_3_6_25_2
  doi: 10.1017/S0022336000022897
– ident: e_1_3_6_15_2
  doi: 10.1016/S0016-6995(97)80056-3
– ident: e_1_3_6_18_2
  doi: 10.1111/j.1502-3931.2011.00264.x
– ident: e_1_3_6_13_2
  doi: 10.1098/rspb.2011.2064
– ident: e_1_3_6_3_2
  doi: 10.1002/bies.200800128
– ident: e_1_3_6_6_2
  doi: 10.1073/pnas.0810106105
– ident: e_1_3_6_8_2
  doi: 10.1111/j.1475-4983.2008.00834.x
– ident: e_1_3_6_11_2
  doi: 10.1073/pnas.0601536103
– ident: e_1_3_6_32_2
  doi: 10.1130/G22526.1
– ident: e_1_3_6_37_2
  doi: 10.1371/journal.pone.0042582
– ident: e_1_3_6_39_2
  doi: 10.1371/journal.pone.0070741
– ident: e_1_3_6_40_2
  doi: 10.1126/science.1206375
– ident: e_1_3_6_10_2
  doi: 10.2307/3515093
– ident: e_1_3_6_27_2
  doi: 10.1080/14772019.2010.492644
– ident: e_1_3_6_16_2
  doi: 10.1666/0094-8373(2002)028<0155:LGATIO>2.0.CO;2
– ident: e_1_3_6_36_2
  doi: 10.1038/346171a0
– ident: e_1_3_6_28_2
  doi: 10.1038/nature11495
– ident: e_1_3_6_23_2
  doi: 10.1038/ncomms4641
– ident: e_1_3_6_20_2
  doi: 10.1371/journal.pone.0088583
– ident: e_1_3_6_7_2
  doi: 10.1016/S0016-7037(99)00087-3
– ident: e_1_3_6_17_2
  doi: 10.1111/j.1502-3931.1996.tb01831.x
– ident: e_1_3_6_38_2
  doi: 10.1098/rspb.2013.0071
– ident: e_1_3_6_14_2
  doi: 10.1111/ede.12028
– ident: e_1_3_6_29_2
  doi: 10.1098/rspb.2010.1641
– volume-title: Wonderful life: the Burgess Shale and the nature of history
  year: 1989
  ident: e_1_3_6_2_2
– ident: e_1_3_6_34_2
  doi: 10.1130/0091-7613(1996)024<0787:ROMMIT>2.3.CO;2
– ident: e_1_3_6_30_2
  doi: 10.1111/pala.12155
– ident: e_1_3_6_5_2
  doi: 10.1146/annurev.earth.31.100901.144746
– ident: e_1_3_6_4_2
  doi: 10.1038/nature08745
– ident: e_1_3_6_26_2
  doi: 10.4202/app.2008.0110
– ident: e_1_3_6_31_2
  doi: 10.1073/pnas.1115244109
– ident: e_1_3_6_35_2
  doi: 10.1111/j.1475-4983.2008.00828.x
– ident: e_1_3_6_9_2
  doi: 10.1093/icb/43.1.166
– ident: e_1_3_6_24_2
  doi: 10.1371/journal.pone.0032934
– ident: e_1_3_6_21_2
  doi: 10.1098/rspb.2004.3006
– ident: e_1_3_6_19_2
  doi: 10.1111/j.1502-3931.2007.00013.x
– ident: e_1_3_6_33_2
  doi: 10.1144/gsjgs.153.5.0665
– ident: e_1_3_6_22_2
  doi: 10.1371/journal.pone.0052200
– reference: 20947532 - Proc Biol Sci. 2011 Apr 22;278(1709):1150-7
– reference: 24785191 - Nat Commun. 2014;5:3641
– reference: 20118914 - Nature. 2010 Feb 11;463(7282):797-800
– reference: 22116879 - Science. 2011 Nov 25;334(6059):1091-7
– reference: 22158954 - Proc Biol Sci. 2012 May 7;279(1734):1857-64
– reference: 22307616 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1589-94
– reference: 19047625 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19360-5
– reference: 22431989 - PLoS One. 2012;7(3):e32934
– reference: 24533118 - PLoS One. 2014;9(2):e88583
– reference: 19204990 - Bioessays. 2009 Feb;31(2):178-89
– reference: 23446532 - Proc Biol Sci. 2013 Apr 22;280(1757):20130071
– reference: 23300612 - PLoS One. 2012;7(12):e52200
– reference: 23950993 - PLoS One. 2013;8(8):e70741
– reference: 25472836 - BMC Evol Biol. 2014;14:222
– reference: 23060195 - Nature. 2012 Oct 11;490(7419):258-61
– reference: 16571655 - Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5846-51
– reference: 22870334 - PLoS One. 2012;7(8):e42582
– reference: 15817437 - Proc Biol Sci. 2005 Mar 22;272(1563):627-32
– reference: 23809699 - Evol Dev. 2013 Jul-Aug;15(4):243-56
– reference: 21680421 - Integr Comp Biol. 2003 Feb;43(1):166-77
SSID ssj0009585
Score 2.4540792
Snippet Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the...
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20150476
SubjectTerms Animals
Artemia
Arthropoda
Bacteria - metabolism
Bilateria
Cambrian Explosion
Decapoda
Den föränderliga jorden
Fossils
Metazoa
Palaeobiology
Taphonomy
The changing Earth
Title Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization
URI https://royalsocietypublishing.org/doi/full/10.1098/rspb.2015.0476
https://www.ncbi.nlm.nih.gov/pubmed/25972468
https://www.proquest.com/docview/1681260870
https://www.proquest.com/docview/1808694610
https://pubmed.ncbi.nlm.nih.gov/PMC4455810
https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1464
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259114
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaWIiReEC3XcslIRYBKltx2HrcHVEigClrUt8hOnDZSm13tbpDon-IvMmM7x24PAS_RKvEmsefL-PrmG0I2eagSlJlzCsYSBxwed2QmMycPRZwz5iV5jNHIX77G-0fh5-PoeDD43WMt1Qs5yi6ujCv5H6vCObArRsn-g2Xbm8IJ-A32hSNYGI5_ZeO9vjz_QiDNfGKiQ8ZIoS0FRqYoFEjuEwlVlU-sNOs50vGk5mSZGBJNgs5VJowsUwFdaHlmQzX749iDtt-bNywDsxBhWaCjrW2NnLL1rbar7VblkYlkMmlP8lO9X-9VHf94p9a5lJoobuT3dKuudW4yXeso7y6WYheqf3Jaq26haKvZ9rLrGl6k-Vem71XGF0O_6eA2ZN9Z-9zvo5K7vO99cfkmNPlkLnUNboLhDrP5VCKhLxqtFgTTTs81UGBGyPzQZPtZEeNuLt0it32Yl2DKjE_HXk_lmUetMij_sPww1J22f18eBF2a2VxB0J2hDefGhCuqtnokdHif3LNTGDo2eFwnA1VtkDvG1L82yLrtLub0rdU0f_eAVH2o0haqdFJQC1VqoUoBSxShitc6qNIGqrSsaAtVqqFKAap0CaoPydHHvcOdfcem-nAEDHkXjmS-W8BIX0npJkrETBUSlaZyj6vAk1nCAu5Kr4D5hChczgrfzYJCxjCAZYoVWfCIrFWTSj0hFBX0ROaKOMjDMBO-jJjgbiQE84sgiKMhcZq2TzOrg4_pWM5Sw8fgKZotRbOlaLYhedOWnxoFmGtLvmpMmYKTxp03USlootRDlT94WebeUAawHCeY_mBIHhvzt89rcDMkbAkYbQEUiV--UpWnWiw-DKOI4z3f9yGUWi82v7Yq-dXFv30_2P4JH2GJr5vqNIURTJrC9KKc2ntwP9Vfp67Ryn0vPWbTIHmpIrvlj3E6mZ2k1ewclybCIXl9U7G6xgbyvPDptQ33jNztfMxzsraY1eoFzCYW8qX-gv8ADc0kQA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+taphonomy+of+Artemia+reveals+the+role+of+endogenous+microbes+in+mediating+decay+and+fossilization&rft.jtitle=Proceedings+of+the+Royal+Society.+B%2C+Biological+sciences&rft.au=Butler%2C+Aodh%C3%A1n+D&rft.au=Cunningham%2C+John+A&rft.au=Budd%2C+Graham+E&rft.au=Donoghue%2C+Philip+C+J&rft.date=2015-06-07&rft.eissn=1471-2954&rft.volume=282&rft.issue=1808&rft.spage=20150476&rft_id=info:doi/10.1098%2Frspb.2015.0476&rft_id=info%3Apmid%2F25972468&rft.externalDocID=25972468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8452&client=summon