Hybrid Type Rigid Plastic Finite Element Analysis for Bearing Capacity Characteristics of Surface Uniform Loading

In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementa...

Full description

Saved in:
Bibliographic Details
Published inSOILS AND FOUNDATIONS Vol. 45; no. 2; pp. 17 - 27
Main Author Kobayashi, Shun-ichi
Format Journal Article Conference Proceeding
LanguageEnglish
Published Tokyo Elsevier B.V 2005
The Japanese Geotechnical Society
Japanese Geotechnical Society
Subjects
Online AccessGet full text
ISSN0038-0806
1341-7452
DOI10.3208/sandf.45.2_17

Cover

Abstract In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material (c, φ = 0) are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method.
AbstractList In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material (c, φ = 0) are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method.
In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method.
Author Kobayashi, Shun-ichi
Author_xml – sequence: 1
  givenname: Shun-ichi
  surname: Kobayashi
  fullname: Kobayashi, Shun-ichi
  email: koba@mbox.kudpc.kyoto-u.ac.jp
  organization: Department of Civil and Earth Resources Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16924089$$DView record in Pascal Francis
BookMark eNp1kU1v3CAURb1Ipeajy-7ZtDtPwTbYXiajpKk0Uqo2WaNneExf5METYCr534epo1lUygYQnHMRl4vizE8ei-Kz4Ku64t23CN66VSNXlRbtWXHOed2VvOPqY3ER4zPnquJCnBcv9_MQyLLHeY_sF23z8ucIMZFhd-QpIbsdcYc-sWsP4xwpMjcFdoMQyG_ZGvZgKM1s_QcCmISBjm5kk2O_D8GBQfbkKSs7tpnAZueq-OBgjPjpbb4snu5uH9f35ebh-4_19aYEJftUDm2FYrASUJm6rUE5C1Y1xw3HpRQGYbBVPyjFuZPgjLEKmr5xzkppoKsvi69L7j5MLweMSe8oGhxH8Dgdoq76rq6qhmfwyxsI0cDoAnhDUe8D7SDMWqg-U12fuXrhTJhiDOh0fjkkmnwKQKMWXB-r1_-q143Ux-qzVf5nnYLf4W8W_jkm2OKJhpB7HXGhRd_LxciDaE-HJv-CRp9D2iUEc8F_CYOOhtAbtBTQJG0neuf6V7gUuUU
CODEN SOIFBE
CitedBy_id crossref_primary_10_2208_jscejam_76_2_I_225
crossref_primary_10_3208_sandf_50_903
crossref_primary_10_1098_rspa_2006_1788
crossref_primary_10_1016_j_compgeo_2022_104956
crossref_primary_10_2208_jscejam_67_1
crossref_primary_10_3208_sandf_50_767
crossref_primary_10_2208_jscejam_75_2_I_215
crossref_primary_10_2208_jscejj_23_15023
crossref_primary_10_1088_1757_899X_1289_1_012088
crossref_primary_10_1007_s00158_023_03583_z
crossref_primary_10_1002_zamm_201900192
crossref_primary_10_1016_j_compgeo_2023_105652
crossref_primary_10_2208_jscejam_77_2_I_183
crossref_primary_10_1016_j_jrmge_2022_11_012
crossref_primary_10_2208_jsceja_62_520
crossref_primary_10_2208_jscejam_77_2_I_193
crossref_primary_10_2208_jscejam_73_I_333
crossref_primary_10_1016_j_sandf_2020_05_004
crossref_primary_10_2208_jscejam_74_I_191
Cites_doi 10.1002/nag.198
10.1016/0022-5096(54)90025-3
10.1002/nme.511
10.3208/sandf1972.24.34
10.1115/1.3438238
10.1007/978-1-4613-9617-8_2
10.1515/9781400873173
10.3208/sandf1972.34.107
10.1137/1.9781611971453
ContentType Journal Article
Conference Proceeding
Copyright 2005 The Japanese Geotechnical Society
The Japanese Geotechnical Society
2005 INIST-CNRS
Copyright_xml – notice: 2005 The Japanese Geotechnical Society
– notice: The Japanese Geotechnical Society
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
FR3
KR7
DOI 10.3208/sandf.45.2_17
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 27
ExternalDocumentID 16924089
10_3208_sandf_45_2_17
article_sandf1995_45_2_45_17_article_char_en
S0038080620304236
GroupedDBID -~X
0R~
0SF
123
2WC
4.4
457
5B4
6I.
7.U
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKDD
AALRI
AAXUO
ABCQX
ABMAC
ABTAH
ABVKL
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IXB
JSI
JSP
L7B
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
RJT
ROL
RYR
RZJ
SSZ
TKC
WBO
Y6R
ZY4
~02
AAYXX
CITATION
ADVLN
AFJKZ
AKRWK
APXCP
IQODW
8FD
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
FR3
KR7
ID FETCH-LOGICAL-a659t-b72e1bd5ae6c373a6fdad64d5aef0551ceabd29b6600f5afccd6a494ffd55ca83
ISSN 0038-0806
1341-7452
IngestDate Thu Jul 10 17:32:07 EDT 2025
Mon May 05 01:55:38 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Tue Jul 01 04:17:11 EDT 2025
Wed Sep 03 06:30:00 EDT 2025
Fri Feb 23 02:48:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords interior point method
rigid-plastic finite element method (IGC: E3/E13)
inclined loading
limit analysis
bearing capacity
Plastic analysis
Finite element method
International conference
Interior point method
Numerical simulation
Limit analysis
Loadbearing capacity
Soil mechanics
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Special issue on prediction and simulation methods in geomechanics
MergedId FETCHMERGED-LOGICAL-a659t-b72e1bd5ae6c373a6fdad64d5aef0551ceabd29b6600f5afccd6a494ffd55ca83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/sandf1995/45/2/45_17/_article/-char/en
PQID 29832240
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_29832240
pascalfrancis_primary_16924089
crossref_citationtrail_10_3208_sandf_45_2_17
crossref_primary_10_3208_sandf_45_2_17
jstage_primary_article_sandf1995_45_2_45_17_article_char_en
elsevier_sciencedirect_doi_10_3208_sandf_45_2_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-00-00
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005-00-00
PublicationDecade 2000
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle SOILS AND FOUNDATIONS
PublicationTitleAlternate SOILS AND FOUNDATIONS
PublicationYear 2005
Publisher Elsevier B.V
The Japanese Geotechnical Society
Japanese Geotechnical Society
Publisher_xml – name: Elsevier B.V
– name: The Japanese Geotechnical Society
– name: Japanese Geotechnical Society
References 18) Wright, S. (1997) : Primal-dual Interior-point Methods, SIAM.
8) Kojima, M., Mizuno, S. and Yoshise, A. (1989) : A primal-dual interior-point algorithm for linear programming, Progress in Mathematical Programming, Interior-Point and Related Method, Springer-Verlag, 29-47.
10) Lee, C. H. and Kobayashi, S. (1973) : New solution of rigid-plastic deformation problems using a matrix method, Trans. ASME, J. the Engineering for Industry, 95,865-873.
15) Sekiguchi, H. and Kobayashi, S. (1994) : Limit analysis on the bearing capacity characteristic of a near shore structures located on a clay deposit, Proc. 39th Symposium on Soil Mechanics, JSSMFE, 195-202 (in Japanese).
6) Kobayashi, S. (2003a) : Development of hybrid rigid plastic finite element method based on primal-dual interior point method, J. Appl. Mechanics, 6, JSCE, 95-106 (in Japanese).
16) Shield, R. (1954) : Plastic potential theory and Prandtl bearing capacity, Trans. ASME, J. Appl. Mechanics, 21,193-194.
2) Asaoka, A. and Kodaka, T. (1994) : Stability analysis of reinforced soil structures using rigid plastic finite element method, Soils and Foundations, 34 (1), 107-118.
1) Andersen, K. D., Christiansen, E., Conn, A. R. and Overton, M. L. (2000) : An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Scientific Computing, 22 (1), 243-262.
4) Green, A. (1954) : The plastic yielding of metal junction due to combined shear and pressure, J. Mechanics and Physics of Solids, 2,197-211.
11) Lyamin, A. V. and Sloan, S. W. (2002a) : Upper bound limit analysis using linear finite element and non-linear programming, Int. J. for Numerical and Analytical Methods in Geomechanics, 26,181-216.
13) Rockafellar, R. T. (1970) : Convex Analysis, Princeton University Press.
17) Tamura, T., Kobayashi, S. and Sumi, T. (1984) : Limit analysis of soil structure by rigid plastic finite element method, Soils and Foundations, 24 (1), 34-42.
9) Kojima, M., Tsuchiya, T., Mizuno, S. and Yabe, H. (2001) : Interior Point Method, Asakura Publishing (in Japanese).
14) Salenson, J. and Pecker, A. (1995) : Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, Part I : purely cohesive soil, Eur. J. Mechanics A/Solids, 14 (3), 349-375.
7) Kobayashi, S. (2003b) : Limit and shakedown design in geotechnical engineering, Ph. D Dissertation, Kyoto University.
3) Fukushima, M. (2001) : Fundamentals of Nonlinear Optimisation, Asakura Publishing (in Japanese).
5) Hill, R. (1950) : The Mathematical Theory of Plasticity, Oxford University Press.
12) Lyamin, A. V. and Sloan, S. W. (2002b) : Lower bound limit analysis using non-linear programming, Int. J. for Numerical Methods in Engineering, 55,573-611.
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 11) Lyamin, A. V. and Sloan, S. W. (2002a) : Upper bound limit analysis using linear finite element and non-linear programming, Int. J. for Numerical and Analytical Methods in Geomechanics, 26,181-216.
– reference: 12) Lyamin, A. V. and Sloan, S. W. (2002b) : Lower bound limit analysis using non-linear programming, Int. J. for Numerical Methods in Engineering, 55,573-611.
– reference: 5) Hill, R. (1950) : The Mathematical Theory of Plasticity, Oxford University Press.
– reference: 18) Wright, S. (1997) : Primal-dual Interior-point Methods, SIAM.
– reference: 15) Sekiguchi, H. and Kobayashi, S. (1994) : Limit analysis on the bearing capacity characteristic of a near shore structures located on a clay deposit, Proc. 39th Symposium on Soil Mechanics, JSSMFE, 195-202 (in Japanese).
– reference: 14) Salenson, J. and Pecker, A. (1995) : Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, Part I : purely cohesive soil, Eur. J. Mechanics A/Solids, 14 (3), 349-375.
– reference: 7) Kobayashi, S. (2003b) : Limit and shakedown design in geotechnical engineering, Ph. D Dissertation, Kyoto University.
– reference: 3) Fukushima, M. (2001) : Fundamentals of Nonlinear Optimisation, Asakura Publishing (in Japanese).
– reference: 13) Rockafellar, R. T. (1970) : Convex Analysis, Princeton University Press.
– reference: 17) Tamura, T., Kobayashi, S. and Sumi, T. (1984) : Limit analysis of soil structure by rigid plastic finite element method, Soils and Foundations, 24 (1), 34-42.
– reference: 9) Kojima, M., Tsuchiya, T., Mizuno, S. and Yabe, H. (2001) : Interior Point Method, Asakura Publishing (in Japanese).
– reference: 10) Lee, C. H. and Kobayashi, S. (1973) : New solution of rigid-plastic deformation problems using a matrix method, Trans. ASME, J. the Engineering for Industry, 95,865-873.
– reference: 8) Kojima, M., Mizuno, S. and Yoshise, A. (1989) : A primal-dual interior-point algorithm for linear programming, Progress in Mathematical Programming, Interior-Point and Related Method, Springer-Verlag, 29-47.
– reference: 2) Asaoka, A. and Kodaka, T. (1994) : Stability analysis of reinforced soil structures using rigid plastic finite element method, Soils and Foundations, 34 (1), 107-118.
– reference: 4) Green, A. (1954) : The plastic yielding of metal junction due to combined shear and pressure, J. Mechanics and Physics of Solids, 2,197-211.
– reference: 6) Kobayashi, S. (2003a) : Development of hybrid rigid plastic finite element method based on primal-dual interior point method, J. Appl. Mechanics, 6, JSCE, 95-106 (in Japanese).
– reference: 16) Shield, R. (1954) : Plastic potential theory and Prandtl bearing capacity, Trans. ASME, J. Appl. Mechanics, 21,193-194.
– reference: 1) Andersen, K. D., Christiansen, E., Conn, A. R. and Overton, M. L. (2000) : An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Scientific Computing, 22 (1), 243-262.
– ident: 3
– ident: 11
  doi: 10.1002/nag.198
– ident: 5
– ident: 1
– ident: 4
  doi: 10.1016/0022-5096(54)90025-3
– ident: 12
  doi: 10.1002/nme.511
– ident: 17
  doi: 10.3208/sandf1972.24.34
– ident: 10
  doi: 10.1115/1.3438238
– ident: 16
– ident: 14
– ident: 15
– ident: 8
  doi: 10.1007/978-1-4613-9617-8_2
– ident: 13
  doi: 10.1515/9781400873173
– ident: 2
  doi: 10.3208/sandf1972.34.107
– ident: 6
– ident: 9
– ident: 7
– ident: 18
  doi: 10.1137/1.9781611971453
SSID ssj0062011
ssib023160023
ssib000936369
ssib020472873
ssib002223330
ssib003111205
ssib003111287
Score 1.724943
Snippet In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a...
SourceID proquest
pascalfrancis
crossref
jstage
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms Applied sciences
bearing capacity
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Geotechnics
inclined loading
interior point method
limit analysis
rigid-plastic finite element method (IGC: E3/E13)
Soil mechanics. Rocks mechanics
Structural analysis. Stresses
Title Hybrid Type Rigid Plastic Finite Element Analysis for Bearing Capacity Characteristics of Surface Uniform Loading
URI https://dx.doi.org/10.3208/sandf.45.2_17
https://www.jstage.jst.go.jp/article/sandf1995/45/2/45_17/_article/-char/en
https://www.proquest.com/docview/29832240
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX SOILS AND FOUNDATIONS, 2005, Vol.45(2), pp.17-27
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wJCAsbQykfxA-KlpOTDThPxVBCoW8XnNjGeIscfWlFpxtI-wF_PXeykabcKwYtVuY5t-X65Ozu-3xHyLPeFFjzU3lBJ32MGtjt56mtPBSJKuDKpX-U6fP8hHp-yozN-trqnW0WXLPKB_H1tXMn_SBXqQK4YJfsPkm06hQr4DfKFEiQM5VUZX2tqjovpzLIsmyY_UtmGwfgXhmTZk1bMgaUwbzRyM_fNFN3Nvrb3x6EPx05S3d8E_FfRuGBKJfrpcoPXGVzMcnlpBGiF5RyDu370Z4VoJoca_OPr0bfR8fiwOl89X869Q3k-XTtk4BuHDEcwGibExIN6yy2LAHL3StvqNUK6az9uq1fLFulgFLZ0pY3ZdFbXEgRs6vMorGIUSlhGM2B8EGb1Q23e7A171twyDOIUCdzSHbIbRsPE75Dd0eTL10ltqWN0fixtp5225WDFQV-uDbnVZ_kOHjxSM9y-ECWsiLG5UK6Y9cpXOblL9ldRnPRTA5p75Iae75E7bttBnVIv98itFiflffLTIoYiYmiFGOoQQy1iqEMMrRFDQfzUIYbWiKEbiKGFoQ4x1CGGOsTsk9N3b0_ejD2Xl8MTMU8XXj4MdZArLnQso2EkYqOEihlWGB88cKlFrsI0j8GZNlwYKVUsWMqMUZxLkUQPSGdezPUBodpPTKoCk-dCsyhUqdQmUFGYxCwwUrAueVGvfCYdaT3mTpllsHlFQWWVoDLGMxRUlzxvml9YtpZtDf1ajJlzNa0LmQHytj3yyoq76dnpdtsMqQ5sUyiCYfMnrjboqi7prWFkNT0H0i55WoMmAw2Pn-3glSuWZRamaHWZ__BvXTwiN1fv7mPSWVwu9RNwmRd5zyG_R3Ymn5M_hafRmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Soils+and+foundations&rft.atitle=Hybrid+type+rigid+plastic+finite+element+analysis+for+bearing+capacity+characteristics+of+surface+uniform+loading&rft.au=KOBAYASHI%2C+Shun-Ichi&rft.date=2005-01-01&rft.pub=Japanese+Geotechnical+Society&rft.issn=0038-0806&rft.volume=45&rft.issue=2&rft.spage=17&rft.epage=27&rft_id=info:doi/10.3208%2Fsandf.45.2_17&rft.externalDBID=n%2Fa&rft.externalDocID=16924089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon