Hybrid Type Rigid Plastic Finite Element Analysis for Bearing Capacity Characteristics of Surface Uniform Loading
In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementa...
Saved in:
Published in | SOILS AND FOUNDATIONS Vol. 45; no. 2; pp. 17 - 27 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Tokyo
Elsevier B.V
2005
The Japanese Geotechnical Society Japanese Geotechnical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0038-0806 1341-7452 |
DOI | 10.3208/sandf.45.2_17 |
Cover
Abstract | In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material (c, φ = 0) are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method. |
---|---|
AbstractList | In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material (c, φ = 0) are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method. In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a simple assumption of rigid-plastic material behaviour, limit analysis has a rigorous theoretical background called limit theorems. The implementation of limit analysis to finite element method is recognised as rigid-plastic finite element method. The author recently proposed a new formulation of hybrid type rigid-plastic finite element method based on the interior point method, named primal-dual rigid-plastic finite element method (PDRPFEM). In this paper, characteristics of primal-dual rigid-plastic finite element method are illustrated in contrast to the ordinary rigid-plastic finite element method based on the upper bound theorem. Advantages of the primal-dual rigid-plastic finite element method in the numerical calculations are also explained. In addition to this, as a real rigid-plastic boundary value problem, bearing capacity problems of surface uniform loading on weightless Tresca material are solved by the primal-dual rigid-plastic finite element method. Numerical solutions are compared to the analytical solutions to investigate numerical accuracies of the primal-dual rigid-plastic finite element method. |
Author | Kobayashi, Shun-ichi |
Author_xml | – sequence: 1 givenname: Shun-ichi surname: Kobayashi fullname: Kobayashi, Shun-ichi email: koba@mbox.kudpc.kyoto-u.ac.jp organization: Department of Civil and Earth Resources Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16924089$$DView record in Pascal Francis |
BookMark | eNp1kU1v3CAURb1Ipeajy-7ZtDtPwTbYXiajpKk0Uqo2WaNneExf5METYCr534epo1lUygYQnHMRl4vizE8ei-Kz4Ku64t23CN66VSNXlRbtWXHOed2VvOPqY3ER4zPnquJCnBcv9_MQyLLHeY_sF23z8ucIMZFhd-QpIbsdcYc-sWsP4xwpMjcFdoMQyG_ZGvZgKM1s_QcCmISBjm5kk2O_D8GBQfbkKSs7tpnAZueq-OBgjPjpbb4snu5uH9f35ebh-4_19aYEJftUDm2FYrASUJm6rUE5C1Y1xw3HpRQGYbBVPyjFuZPgjLEKmr5xzkppoKsvi69L7j5MLweMSe8oGhxH8Dgdoq76rq6qhmfwyxsI0cDoAnhDUe8D7SDMWqg-U12fuXrhTJhiDOh0fjkkmnwKQKMWXB-r1_-q143Ux-qzVf5nnYLf4W8W_jkm2OKJhpB7HXGhRd_LxciDaE-HJv-CRp9D2iUEc8F_CYOOhtAbtBTQJG0neuf6V7gUuUU |
CODEN | SOIFBE |
CitedBy_id | crossref_primary_10_2208_jscejam_76_2_I_225 crossref_primary_10_3208_sandf_50_903 crossref_primary_10_1098_rspa_2006_1788 crossref_primary_10_1016_j_compgeo_2022_104956 crossref_primary_10_2208_jscejam_67_1 crossref_primary_10_3208_sandf_50_767 crossref_primary_10_2208_jscejam_75_2_I_215 crossref_primary_10_2208_jscejj_23_15023 crossref_primary_10_1088_1757_899X_1289_1_012088 crossref_primary_10_1007_s00158_023_03583_z crossref_primary_10_1002_zamm_201900192 crossref_primary_10_1016_j_compgeo_2023_105652 crossref_primary_10_2208_jscejam_77_2_I_183 crossref_primary_10_1016_j_jrmge_2022_11_012 crossref_primary_10_2208_jsceja_62_520 crossref_primary_10_2208_jscejam_77_2_I_193 crossref_primary_10_2208_jscejam_73_I_333 crossref_primary_10_1016_j_sandf_2020_05_004 crossref_primary_10_2208_jscejam_74_I_191 |
Cites_doi | 10.1002/nag.198 10.1016/0022-5096(54)90025-3 10.1002/nme.511 10.3208/sandf1972.24.34 10.1115/1.3438238 10.1007/978-1-4613-9617-8_2 10.1515/9781400873173 10.3208/sandf1972.34.107 10.1137/1.9781611971453 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2005 The Japanese Geotechnical Society The Japanese Geotechnical Society 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 The Japanese Geotechnical Society – notice: The Japanese Geotechnical Society – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD FR3 KR7 |
DOI | 10.3208/sandf.45.2_17 |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 27 |
ExternalDocumentID | 16924089 10_3208_sandf_45_2_17 article_sandf1995_45_2_45_17_article_char_en S0038080620304236 |
GroupedDBID | -~X 0R~ 0SF 123 2WC 4.4 457 5B4 6I. 7.U AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AAKDD AALRI AAXUO ABCQX ABMAC ABTAH ABVKL ACGFS ADBBV ADEZE AENEX AEXQZ AFPKN AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ HZ~ IXB JSI JSP L7B M41 NCXOZ O-L O9- OK1 P2P RIG RJT ROL RYR RZJ SSZ TKC WBO Y6R ZY4 ~02 AAYXX CITATION ADVLN AFJKZ AKRWK APXCP IQODW 8FD AAYWO ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP FR3 KR7 |
ID | FETCH-LOGICAL-a659t-b72e1bd5ae6c373a6fdad64d5aef0551ceabd29b6600f5afccd6a494ffd55ca83 |
ISSN | 0038-0806 1341-7452 |
IngestDate | Thu Jul 10 17:32:07 EDT 2025 Mon May 05 01:55:38 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Tue Jul 01 04:17:11 EDT 2025 Wed Sep 03 06:30:00 EDT 2025 Fri Feb 23 02:48:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | interior point method rigid-plastic finite element method (IGC: E3/E13) inclined loading limit analysis bearing capacity Plastic analysis Finite element method International conference Interior point method Numerical simulation Limit analysis Loadbearing capacity Soil mechanics |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Special issue on prediction and simulation methods in geomechanics |
MergedId | FETCHMERGED-LOGICAL-a659t-b72e1bd5ae6c373a6fdad64d5aef0551ceabd29b6600f5afccd6a494ffd55ca83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/sandf1995/45/2/45_17/_article/-char/en |
PQID | 29832240 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_29832240 pascalfrancis_primary_16924089 crossref_citationtrail_10_3208_sandf_45_2_17 crossref_primary_10_3208_sandf_45_2_17 jstage_primary_article_sandf1995_45_2_45_17_article_char_en elsevier_sciencedirect_doi_10_3208_sandf_45_2_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-00-00 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005-00-00 |
PublicationDecade | 2000 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | SOILS AND FOUNDATIONS |
PublicationTitleAlternate | SOILS AND FOUNDATIONS |
PublicationYear | 2005 |
Publisher | Elsevier B.V The Japanese Geotechnical Society Japanese Geotechnical Society |
Publisher_xml | – name: Elsevier B.V – name: The Japanese Geotechnical Society – name: Japanese Geotechnical Society |
References | 18) Wright, S. (1997) : Primal-dual Interior-point Methods, SIAM. 8) Kojima, M., Mizuno, S. and Yoshise, A. (1989) : A primal-dual interior-point algorithm for linear programming, Progress in Mathematical Programming, Interior-Point and Related Method, Springer-Verlag, 29-47. 10) Lee, C. H. and Kobayashi, S. (1973) : New solution of rigid-plastic deformation problems using a matrix method, Trans. ASME, J. the Engineering for Industry, 95,865-873. 15) Sekiguchi, H. and Kobayashi, S. (1994) : Limit analysis on the bearing capacity characteristic of a near shore structures located on a clay deposit, Proc. 39th Symposium on Soil Mechanics, JSSMFE, 195-202 (in Japanese). 6) Kobayashi, S. (2003a) : Development of hybrid rigid plastic finite element method based on primal-dual interior point method, J. Appl. Mechanics, 6, JSCE, 95-106 (in Japanese). 16) Shield, R. (1954) : Plastic potential theory and Prandtl bearing capacity, Trans. ASME, J. Appl. Mechanics, 21,193-194. 2) Asaoka, A. and Kodaka, T. (1994) : Stability analysis of reinforced soil structures using rigid plastic finite element method, Soils and Foundations, 34 (1), 107-118. 1) Andersen, K. D., Christiansen, E., Conn, A. R. and Overton, M. L. (2000) : An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Scientific Computing, 22 (1), 243-262. 4) Green, A. (1954) : The plastic yielding of metal junction due to combined shear and pressure, J. Mechanics and Physics of Solids, 2,197-211. 11) Lyamin, A. V. and Sloan, S. W. (2002a) : Upper bound limit analysis using linear finite element and non-linear programming, Int. J. for Numerical and Analytical Methods in Geomechanics, 26,181-216. 13) Rockafellar, R. T. (1970) : Convex Analysis, Princeton University Press. 17) Tamura, T., Kobayashi, S. and Sumi, T. (1984) : Limit analysis of soil structure by rigid plastic finite element method, Soils and Foundations, 24 (1), 34-42. 9) Kojima, M., Tsuchiya, T., Mizuno, S. and Yabe, H. (2001) : Interior Point Method, Asakura Publishing (in Japanese). 14) Salenson, J. and Pecker, A. (1995) : Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, Part I : purely cohesive soil, Eur. J. Mechanics A/Solids, 14 (3), 349-375. 7) Kobayashi, S. (2003b) : Limit and shakedown design in geotechnical engineering, Ph. D Dissertation, Kyoto University. 3) Fukushima, M. (2001) : Fundamentals of Nonlinear Optimisation, Asakura Publishing (in Japanese). 5) Hill, R. (1950) : The Mathematical Theory of Plasticity, Oxford University Press. 12) Lyamin, A. V. and Sloan, S. W. (2002b) : Lower bound limit analysis using non-linear programming, Int. J. for Numerical Methods in Engineering, 55,573-611. 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: 11) Lyamin, A. V. and Sloan, S. W. (2002a) : Upper bound limit analysis using linear finite element and non-linear programming, Int. J. for Numerical and Analytical Methods in Geomechanics, 26,181-216. – reference: 12) Lyamin, A. V. and Sloan, S. W. (2002b) : Lower bound limit analysis using non-linear programming, Int. J. for Numerical Methods in Engineering, 55,573-611. – reference: 5) Hill, R. (1950) : The Mathematical Theory of Plasticity, Oxford University Press. – reference: 18) Wright, S. (1997) : Primal-dual Interior-point Methods, SIAM. – reference: 15) Sekiguchi, H. and Kobayashi, S. (1994) : Limit analysis on the bearing capacity characteristic of a near shore structures located on a clay deposit, Proc. 39th Symposium on Soil Mechanics, JSSMFE, 195-202 (in Japanese). – reference: 14) Salenson, J. and Pecker, A. (1995) : Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, Part I : purely cohesive soil, Eur. J. Mechanics A/Solids, 14 (3), 349-375. – reference: 7) Kobayashi, S. (2003b) : Limit and shakedown design in geotechnical engineering, Ph. D Dissertation, Kyoto University. – reference: 3) Fukushima, M. (2001) : Fundamentals of Nonlinear Optimisation, Asakura Publishing (in Japanese). – reference: 13) Rockafellar, R. T. (1970) : Convex Analysis, Princeton University Press. – reference: 17) Tamura, T., Kobayashi, S. and Sumi, T. (1984) : Limit analysis of soil structure by rigid plastic finite element method, Soils and Foundations, 24 (1), 34-42. – reference: 9) Kojima, M., Tsuchiya, T., Mizuno, S. and Yabe, H. (2001) : Interior Point Method, Asakura Publishing (in Japanese). – reference: 10) Lee, C. H. and Kobayashi, S. (1973) : New solution of rigid-plastic deformation problems using a matrix method, Trans. ASME, J. the Engineering for Industry, 95,865-873. – reference: 8) Kojima, M., Mizuno, S. and Yoshise, A. (1989) : A primal-dual interior-point algorithm for linear programming, Progress in Mathematical Programming, Interior-Point and Related Method, Springer-Verlag, 29-47. – reference: 2) Asaoka, A. and Kodaka, T. (1994) : Stability analysis of reinforced soil structures using rigid plastic finite element method, Soils and Foundations, 34 (1), 107-118. – reference: 4) Green, A. (1954) : The plastic yielding of metal junction due to combined shear and pressure, J. Mechanics and Physics of Solids, 2,197-211. – reference: 6) Kobayashi, S. (2003a) : Development of hybrid rigid plastic finite element method based on primal-dual interior point method, J. Appl. Mechanics, 6, JSCE, 95-106 (in Japanese). – reference: 16) Shield, R. (1954) : Plastic potential theory and Prandtl bearing capacity, Trans. ASME, J. Appl. Mechanics, 21,193-194. – reference: 1) Andersen, K. D., Christiansen, E., Conn, A. R. and Overton, M. L. (2000) : An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms, SIAM J. Scientific Computing, 22 (1), 243-262. – ident: 3 – ident: 11 doi: 10.1002/nag.198 – ident: 5 – ident: 1 – ident: 4 doi: 10.1016/0022-5096(54)90025-3 – ident: 12 doi: 10.1002/nme.511 – ident: 17 doi: 10.3208/sandf1972.24.34 – ident: 10 doi: 10.1115/1.3438238 – ident: 16 – ident: 14 – ident: 15 – ident: 8 doi: 10.1007/978-1-4613-9617-8_2 – ident: 13 doi: 10.1515/9781400873173 – ident: 2 doi: 10.3208/sandf1972.34.107 – ident: 6 – ident: 9 – ident: 7 – ident: 18 doi: 10.1137/1.9781611971453 |
SSID | ssj0062011 ssib023160023 ssib000936369 ssib020472873 ssib002223330 ssib003111205 ssib003111287 |
Score | 1.724943 |
Snippet | In the geotechnical engineering design, rigid plastic analysis is usually used to estimate a factor of safety or an ultimate capacity. Although based on a... |
SourceID | proquest pascalfrancis crossref jstage elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17 |
SubjectTerms | Applied sciences bearing capacity Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology Geotechnics inclined loading interior point method limit analysis rigid-plastic finite element method (IGC: E3/E13) Soil mechanics. Rocks mechanics Structural analysis. Stresses |
Title | Hybrid Type Rigid Plastic Finite Element Analysis for Bearing Capacity Characteristics of Surface Uniform Loading |
URI | https://dx.doi.org/10.3208/sandf.45.2_17 https://www.jstage.jst.go.jp/article/sandf1995/45/2/45_17/_article/-char/en https://www.proquest.com/docview/29832240 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | SOILS AND FOUNDATIONS, 2005, Vol.45(2), pp.17-27 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wJCAsbQykfxA-KlpOTDThPxVBCoW8XnNjGeIscfWlFpxtI-wF_PXeykabcKwYtVuY5t-X65Ozu-3xHyLPeFFjzU3lBJ32MGtjt56mtPBSJKuDKpX-U6fP8hHp-yozN-trqnW0WXLPKB_H1tXMn_SBXqQK4YJfsPkm06hQr4DfKFEiQM5VUZX2tqjovpzLIsmyY_UtmGwfgXhmTZk1bMgaUwbzRyM_fNFN3Nvrb3x6EPx05S3d8E_FfRuGBKJfrpcoPXGVzMcnlpBGiF5RyDu370Z4VoJoca_OPr0bfR8fiwOl89X869Q3k-XTtk4BuHDEcwGibExIN6yy2LAHL3StvqNUK6az9uq1fLFulgFLZ0pY3ZdFbXEgRs6vMorGIUSlhGM2B8EGb1Q23e7A171twyDOIUCdzSHbIbRsPE75Dd0eTL10ltqWN0fixtp5225WDFQV-uDbnVZ_kOHjxSM9y-ECWsiLG5UK6Y9cpXOblL9ldRnPRTA5p75Iae75E7bttBnVIv98itFiflffLTIoYiYmiFGOoQQy1iqEMMrRFDQfzUIYbWiKEbiKGFoQ4x1CGGOsTsk9N3b0_ejD2Xl8MTMU8XXj4MdZArLnQso2EkYqOEihlWGB88cKlFrsI0j8GZNlwYKVUsWMqMUZxLkUQPSGdezPUBodpPTKoCk-dCsyhUqdQmUFGYxCwwUrAueVGvfCYdaT3mTpllsHlFQWWVoDLGMxRUlzxvml9YtpZtDf1ajJlzNa0LmQHytj3yyoq76dnpdtsMqQ5sUyiCYfMnrjboqi7prWFkNT0H0i55WoMmAw2Pn-3glSuWZRamaHWZ__BvXTwiN1fv7mPSWVwu9RNwmRd5zyG_R3Ymn5M_hafRmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Soils+and+foundations&rft.atitle=Hybrid+type+rigid+plastic+finite+element+analysis+for+bearing+capacity+characteristics+of+surface+uniform+loading&rft.au=KOBAYASHI%2C+Shun-Ichi&rft.date=2005-01-01&rft.pub=Japanese+Geotechnical+Society&rft.issn=0038-0806&rft.volume=45&rft.issue=2&rft.spage=17&rft.epage=27&rft_id=info:doi/10.3208%2Fsandf.45.2_17&rft.externalDBID=n%2Fa&rft.externalDocID=16924089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0806&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0806&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0806&client=summon |