Predictive Control of Power Converters and Electrical Drives

Describes the general principles and current research into Model Predictive Control (MPC);  the most up-to-date control method for power converters and drivesThe book starts with an introduction to the subject before the first chapter on classical control methods for power converters and drives. Thi...

Full description

Saved in:
Bibliographic Details
Main Authors Rodriguez, Jose, Cortes, Patricio
Format eBook Book
LanguageEnglish
Published Chichester Wiley-IEEE Press 2012
Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons
Edition1. Aufl.
SeriesWiley - IEEE
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Foreword xi Preface xiii Acknowledgments xv Part One INTRODUCTION 1 Introduction 3 1.1 Applications of Power Converters and Drives 3 1.2 Types of Power Converters 5 1.2.1 Generic Drive System 5 1.2.2 Classification of Power Converters 5 1.3 Control of Power Converters and Drives 7 1.3.1 Power Converter Control in the Past 7 1.3.2 Power Converter Control Today 10 1.3.3 Control Requirements and Challenges 11 1.3.4 Digital Control Platforms 12 1.4 Why Predictive Control is Particularly Suited for Power Electronics 13 1.5 Contents of this Book 15 References 16 2 Classical Control Methods for Power Converters and Drives 17 2.1 Classical Current Control Methods 17 2.1.1 Hysteresis Current Control 18 2.1.2 Linear Control with Pulse Width Modulation or Space Vector Modulation 20 2.2 Classical Electrical Drive Control Methods 24 2.2.1 Field Oriented Control 24 2.2.2 Direct Torque Control 26 2.3 Summary 30 References 30 3 Model Predictive Control 31 3.1 Predictive Control Methods for Power Converters and Drives 31 3.2 Basic Principles of Model Predictive Control 32 3.3 Model Predictive Control for Power Electronics and Drives 34 3.3.1 Controller Design 35 3.3.2 Implementation 37 3.3.3 General Control Scheme 38 3.4 Summary 38 References 38 Part Two MODEL PREDICTIVE CONTROL APPLIED TO POWER CONVERTERS 4 Predictive Control of a Three-Phase Inverter 43 4.1 Introduction 43 4.2 Predictive Current Control 43 4.3 Cost Function 44 4.4 Converter Model 44 4.5 Load Model 48 4.6 Discrete-Time Model for Prediction 49 4.7 Working Principle 50 4.8 Implementation of the Predictive Control Strategy 50 4.9 Comparison to a Classical Control Scheme 59 4.10 Summary 63 References 63 5 Predictive Control of a Three-Phase Neutral-Point Clamped Inverter 65 5.1 Introduction 65 5.2 System Model 66 5.3 Linear Current Control Method with Pulse Width Modulation 70 5.4 Predictive Current Control Method 70 5.5 Implementation 72 5.5.1 Reduction of the Switching Frequency 74 5.5.2 Capacitor Voltage Balance 77 5.6 Summary 78 References 79 6 Control of an Active Front-End Rectifier 81 6.1 Introduction 81 6.2 Rectifier Model 84 6.2.1 Space Vector Model 84 6.2.2 Discrete-Time Model 85 6.3 Predictive Current Control in an Active Front-End 86 6.3.1 Cost Function 86 6.4 Predictive Power Control 89 6.4.1 Cost Function and Control Scheme 89 6.5 Predictive Control of an AC–DC–AC Converter 92 6.5.1 Control of the Inverter Side 92 6.5.2 Control of the Rectifier Side 94 6.5.3 Control Scheme 94 6.6 Summary 96 References 97 7 Control of a Matrix Converter 99 7.1 Introduction 99 7.2 System Model 99 7.2.1 Matrix Converter Model 99 7.2.2 Working Principle of the Matrix Converter 101 7.2.3 Commutation of the Switches 102 7.3 Classical Control: The Venturini Method 103 7.4 Predictive Current Control of the Matrix Converter 104 7.4.1 Model of the Matrix Converter for Predictive Control 104 7.4.2 Output Current Control 107 7.4.3 Output Current Control with Minimization of the Input Reactive Power 108 7.4.4 Input Reactive Power Control 113 7.5 Summary 113 References 114 Part Three MODEL PREDICTIVE CONTROL APPLIED TO MOTOR DRIVES 8 Predictive Control of Induction Machines 117 8.1 Introduction 117 8.2 Dynamic Model of an Induction Machine 118 8.3 Field Oriented Control of an Induction Machine Fed by a Matrix Converter Using Predictive Current Control 121 8.3.1 Control Scheme 121 8.4 Predictive Torque Control of an Induction Machine Fed by a Voltage Source Inverter 123 8.5 Predictive Torque Control of an Induction Machine Fed by a Matrix Converter 128 8.5.1 Torque and Flux Control 128 8.5.2 Torque and Flux Control with Minimization of the Input Reactive Power 129 8.6 Summary 130 References 131 9 Predictive Control of Permanent Magnet Synchronous Motors 133 9.1 Introduction 133 9.2 Machine Equations 133 9.3 Field Oriented Control Using Predictive Current Control 135 9.3.1 Discrete-Time Model 136 9.3.2 Control Scheme 136 9.4 Predictive Speed Control 139 9.4.1 Discrete-Time Model 139 9.4.2 Control Scheme 140 9.4.3 Rotor Speed Estimation 141 9.5 Summary 142 References 143 Part Four DESIGN AND IMPLEMENTATION ISSUES OF MODEL PREDICTIVE CONTROL 10 Cost Function Selection 147 10.1 Introduction 147 10.2 Reference Following 147 10.2.1 Some Examples 148 10.3 Actuation Constraints 148 10.3.1 Minimization of the Switching Frequency 150 10.3.2 Minimization of the Switching Losses 152 10.4 Hard Constraints 155 10.5 Spectral Content 157 10.6 Summary 161 References 161 11 Weighting Factor Design 163 11.1 Introduction 163 11.2 Cost Function Classification 164 11.2.1 Cost Functions without Weighting Factors 164 11.2.2 Cost Functions with Secondary Terms 164 11.2.3 Cost Functions with Equally Important Terms 165 11.3 Weighting Factors Adjustment 166 11.3.1 For Cost Functions with Secondary Terms 166 11.3.2 For Cost Functions with Equally Important Terms 167 11.4 Examples 168 11.4.1 Switching Frequency Reduction 168 11.4.2 Common-Mode Voltage Reduction 168 11.4.3 Input Reactive Power Reduction 170 11.4.4 Torque and Flux Control 170 11.4.5 Capacitor Voltage Balancing 174 11.5 Summary 175 References 176 12 Delay Compensation 177 12.1 Introduction 177 12.2 Effect of Delay due to Calculation Time 177 12.3 Delay Compensation Method 180 12.4 Prediction of Future References 181 12.4.1 Calculation of Future References Using Extrapolation 185 12.4.2 Calculation of Future References Using Vector Angle Compensation 185 12.5 Summary 188 References 188 13 Effect of Model Parameter Errors 191 13.1 Introduction 191 13.2 Three-Phase Inverter 191 13.3 Proportional–Integral Controllers with Pulse Width Modulation 192 13.3.1 Control Scheme 192 13.3.2 Effect of Model Parameter Errors 193 13.4 Deadbeat Control with Pulse Width Modulation 194 13.4.1 Control Scheme 194 13.4.2 Effect of Model Parameter Errors 195 13.5 Model Predictive Control 195 13.5.1 Effect of Load Parameter Variation 196 13.6 Comparative Results 197 13.7 Summary 201 References 201 Appendix A Predictive Control Simulation – Three-Phase Inverter 203 A.1 Predictive Current Control of a Three-Phase Inverter 203 A.1.1 Definition of Simulation Parameters 207 A.1.2 MATLAB® Code for Predictive Current Control 208 Appendix B Predictive Control Simulation – Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter 211 B.1 Definition of Predictive Torque Control Simulation Parameters 213 B.2 MATLAB® Code for the Predictive Torque Control Simulation 215 Appendix C Predictive Control Simulation – Matrix Converter 219 C.1 Predictive Current Control of a Direct Matrix Converter 219 C.1.1 Definition of Simulation Parameters 221 C.1.2 MATLAB® Code for Predictive Current Control with Instantaneous Reactive Power Minimization 222 Index 227
  • 12.4 Prediction of Future References -- 12.4.1 Calculation of Future References Using Extrapolation -- 12.4.2 Calculation of Future References Using Vector Angle Compensation -- 12.5 Summary -- References -- Chapter 13 Effect of Model Parameter Errors -- 13.1 Introduction -- 13.2 Three-Phase Inverter -- 13.3 Proportional- Integral Controllers with Pulse Width Modulation -- 13.3.1 Control Scheme -- 13.3.2 Effect of Model Parameter Errors -- 13.4 Deadbeat Control with Pulse Width Modulation -- 13.4.1 Control Scheme -- 13.4.2 Effect of Model Parameter Errors -- 13.5 Model Predictive Control -- 13.5.1 Effect of Load Parameter Variation -- 13.6 Comparative Results -- 13.7 Summary -- References -- Appendix A Predictive Control Simulation- Three-Phase Inverter -- A.1 Predictive Current Control of a Three-Phase Inverter -- A.1.1 Definition of Simulation Parameters -- A.1.2 MATLAB® Code for Predictive Current Control -- Appendix B Predictive Control Simulation- Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter -- B.1 Definition of Predictive Torque Control Simulation Parameters -- B.2 MATLAB® Code for the Predictive Torque Control Simulation -- Appendix C Predictive Control Simulation- Matrix Converter -- C.1 Predictive Current Control of a Direct Matrix Converter -- C.1.1 Definition of Simulation Parameters -- C.1.2 MATLAB® Code for Predictive Current Control with Instantaneous Reactive Power Minimization -- Index
  • 8.3.1 Control Scheme -- 8.4 Predictive Torque Control of an Induction Machine Fed by a Voltage Source Inverter -- 8.5 Predictive Torque Control of an Induction Machine Fed by a Matrix Converter -- 8.5.1 Torque and Flux Control -- 8.5.2 Torque and Flux Control with Minimization of the Input Reactive Power -- 8.6 Summary -- References -- Chapter 9 Predictive Control of Permanent Magnet Synchronous Motors -- 9.1 Introduction -- 9.2 Machine Equations -- 9.3 Field Oriented Control Using Predictive Current Control -- 9.3.1 Discrete-Time Model -- 9.3.2 Control Scheme -- 9.4 Predictive Speed Control -- 9.4.1 Discrete-Time Model -- 9.4.2 Control Scheme -- 9.4.3 Rotor Speed Estimation -- 9.5 Summary -- References -- Part 4 Design and Implementation Issues of Model Predictive Control -- Chapter 10 Cost Function Selection -- 10.1 Introduction -- 10.2 Reference Following -- 10.2.1 Some Examples -- 10.3 Actuation Constraints -- 10.3.1 Minimization of the Switching Frequency -- 10.3.2 Minimization of the Switching Losses -- 10.4 Hard Constraints -- 10.5 Spectral Content -- 10.6 Summary -- References -- Chapter 11 Weighting Factor Design -- 11.1 Introduction -- 11.2 Cost Function Classification -- 11.2.1 Cost Functions without Weighting Factors -- 11.2.2 Cost Functions with Secondary Terms -- 11.2.3 Cost Functions with Equally Important Terms -- 11.3 Weighting Factors Adjustment -- 11.3.1 For Cost Functions with Secondary Terms -- 11.3.2 For Cost Functions with Equally Important Terms -- 11.4 Examples -- 11.4.1 Switching Frequency Reduction -- 11.4.2 Common-Mode Voltage Reduction -- 11.4.3 Input Reactive Power Reduction -- 11.4.4 Torque and Flux Control -- 11.4.5 Capacitor Voltage Balancing -- 11.5 Summary -- References -- Chapter 12 Delay Compensation -- 12.1 Introduction -- 12.2 Effect of Delay due to Calculation Time -- 12.3 Delay Compensation Method
  • References -- Chapter 5 Predictive Control of a Three-Phase Neutral-Point Clamped Inverter -- 5.1 Introduction -- 5.2 System Model -- 5.3 Linear Current Control Method with Pulse Width Modulation -- 5.4 Predictive Current Control Method -- 5.5 Implementation -- 5.5.1 Reduction of the Switching Frequency -- 5.5.2 Capacitor Voltage Balance -- 5.6 Summary -- References -- Chapter 6 Control of an Active Front-End Rectifier -- 6.1 Introduction -- 6.2 Rectifier Model -- 6.2.1 Space Vector Model -- 6.2.2 Discrete-Time Model -- 6.3 Predictive Current Control in an Active Front-End -- 6.3.1 Cost Function -- 6.4 Predictive Power Control -- 6.4.1 Cost Function and Control Scheme -- 6.5 Predictive Control of an AC- DC- AC Converter -- 6.5.1 Control of the Inverter Side -- 6.5.2 Control of the Rectifier Side -- 6.5.3 Control Scheme -- 6.6 Summary -- References -- Chapter 7 Control of a Matrix Converter -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Matrix Converter Model -- 7.2.2 Working Principle of the Matrix Converter -- 7.2.3 Commutation of the Switches -- 7.3 Classical Control: The Venturini Method -- 7.4 Predictive Current Control of the Matrix Converter -- 7.4.1 Model of the Matrix Converter for Predictive Control -- 7.4.1.1 Matrix Converter Model -- 7.4.1.2 Load Model -- 7.4.1.3 Input Filter Model -- 7.4.1.4 The Instantaneous Reactive Power -- 7.4.2 Output Current Control -- 7.4.3 Output Current Control with Minimization of the Input Reactive Power -- 7.4.3.1 Selection of Weighting Factor A -- 7.4.4 Input Reactive Power Control -- 7.5 Summary -- References -- Part 3 Model Predictive Control Applied to Motor Drives -- Chapter 8 Predictive Control of Induction Machines -- 8.1 Introduction -- 8.2 Dynamic Model of an Induction Machine -- 8.3 Field Oriented Control of an Induction Machine Fed by a Matrix Converter Using Predictive Current Control
  • Intro -- Predictive Control of Power Converters and Electrical Drives -- Contents -- Foreword -- Preface -- Acknowledgments -- Part 1 Introduction -- Chapter 1 Introduction -- 1.1 Applications of Power Converters and Drives -- 1.2 Types of Power Converters -- 1.2.1 Generic Drive System -- 1.2.2 Classification of Power Converters -- 1.3 Control of Power Converters and Drives -- 1.3.1 Power Converter Control in the Past -- 1.3.2 Power Converter Control Today -- 1.3.3 Control Requirements and Challenges -- 1.3.4 Digital Control Platforms -- 1.4 Why Predictive Control is Particularly Suited for Power Electronics -- 1.5 Contents of this Book -- References -- Chapter 2 Classical Control Methods for Power Converters and Drives -- 2.1 Classical Current Control Methods -- 2.1.1 Hysteresis Current Control -- 2.1.2 Linear Control with Pulse Width Modulation or Space Vector Modulation -- 2.1.2.1 Pulse Width Modulation -- 2.1.2.2 Linear Control with Space Vector Modulation -- 2.2 Classical Electrical Drive Control Methods -- 2.2.1 Field Oriented Control -- 2.2.2 Direct Torque Control -- 2.3 Summary -- References -- Chapter 3 Model Predictive Control -- 3.1 Predictive Control Methods for Power Converters and Drives -- 3.2 Basic Principles of Model Predictive Control -- 3.3 Model Predictive Control for Power Electronics and Drives -- 3.3.1 Controller Design -- 3.3.2 Implementation -- 3.3.3 General Control Scheme -- 3.4 Summary -- References -- Part 2 Model Predictive Control Applied to Power Converters -- Chapter 4 Predictive Control of a Three-Phase Inverter -- 4.1 Introduction -- 4.2 Predictive Current Control -- 4.3 Cost Function -- 4.4 Converter Model -- 4.5 Load Model -- 4.6 Discrete-Time Model for Prediction -- 4.7 Working Principle -- 4.8 Implementation of the Predictive Control Strategy -- 4.9 Comparison to a Classical Control Scheme -- 4.10 Summary