Pattern polynomial graphs

A graph $X$ is said to be a pattern polynomial graph if its adjacency algebra is a coherent algebra. In this study we will find a necessary and sufficient condition for a graph to be a pattern polynomial graph. Some of the properties of the graphs which are polynomials in the pattern polynomial grap...

Full description

Saved in:
Bibliographic Details
Main Authors Reddy, A. Satyanarayana, Mehta, Shashank K
Format Journal Article
LanguageEnglish
Published 23.06.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A graph $X$ is said to be a pattern polynomial graph if its adjacency algebra is a coherent algebra. In this study we will find a necessary and sufficient condition for a graph to be a pattern polynomial graph. Some of the properties of the graphs which are polynomials in the pattern polynomial graph have been studied. We also identify known graph classes which are pattern polynomial graphs.
AbstractList A graph $X$ is said to be a pattern polynomial graph if its adjacency algebra is a coherent algebra. In this study we will find a necessary and sufficient condition for a graph to be a pattern polynomial graph. Some of the properties of the graphs which are polynomials in the pattern polynomial graph have been studied. We also identify known graph classes which are pattern polynomial graphs.
Author Mehta, Shashank K
Reddy, A. Satyanarayana
Author_xml – sequence: 1
  givenname: A. Satyanarayana
  surname: Reddy
  fullname: Reddy, A. Satyanarayana
– sequence: 2
  givenname: Shashank K
  surname: Mehta
  fullname: Mehta, Shashank K
BackLink https://doi.org/10.48550/arXiv.1106.4745$$DView paper in arXiv
BookMark eNotzjsPgjAYheEOOii662L4A2AvfC2MhnhLSHRgJ6W0SsIthRj5916n804nzxxNmrbRCK0I9oMQAG-lfZYPnxDM_UAEMEPrqxwGbRu3a6uxaetSVu7Nyu7eL9DUyKrXy_86KD3s0_jkJZfjOd4lnuQAXgCU4iIkUWEIYBHRPCRggCvGNY1yaXL8LlUwrmhOFVaGMSMEKTQITELKHLT53X5pWWfLWtox-xCzD5G9ALzlNnM
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/3.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/3.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1106.4745
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1106_4745
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a655-45220d819df150792b815f56c36e29bafb036ecd36c2b2c0cf33f771de5701823
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a655-45220d819df150792b815f56c36e29bafb036ecd36c2b2c0cf33f771de5701823
OpenAccessLink https://arxiv.org/abs/1106.4745
ParticipantIDs arxiv_primary_1106_4745
PublicationCentury 2000
PublicationDate 2011-06-23
PublicationDateYYYYMMDD 2011-06-23
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-23
  day: 23
PublicationDecade 2010
PublicationYear 2011
Score 1.4940313
SecondaryResourceType preprint
Snippet A graph $X$ is said to be a pattern polynomial graph if its adjacency algebra is a coherent algebra. In this study we will find a necessary and sufficient...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Combinatorics
Title Pattern polynomial graphs
URI https://arxiv.org/abs/1106.4745
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV25TgMxEB0lqWgQiCucW9AavD7jEiFChMRRBGm7yKeEhEKUBAR_z9i7IBpae5o3Lt6bsecZ4LwOlsrgJMlmXkR4YYg1nhGrKUuyDtyN8jTy_YOaPIu7RjY9OPuZhbHLz5eP1h_YrS6Rm9SF0EL2oc9YfrF1-9i0l43FiasL_w1DhVlW_lDEeAs2O21XXbWHsQ29ON-B4VNxsJxXi7fXrzwDjBHFJXq1C9PxzfR6Qrr_CIhVEtGgVKEBGTSkrKIMc6NaJqk8V5EZZ5NDNog-cOWZY576xHnSug5Raooynu_BAEv6eAAVk8nQaEywPgmusYxg3BtKrXdUYK6GsF9wzBat5cQsI5xlhIf_7hzBRtvvVITxYxisl-_xBAlz7U5L2r4B_kRp0w
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+polynomial+graphs&rft.au=Reddy%2C+A.+Satyanarayana&rft.au=Mehta%2C+Shashank+K&rft.date=2011-06-23&rft_id=info:doi/10.48550%2Farxiv.1106.4745&rft.externalDocID=1106_4745