Asymptotic Unconditionality

We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to \infty} \|x^* + x_n^*\| = \lim_{n \to \infty} \|x^* - x_n^*\|$ whenever $x^* \in X^*$, $(x_n^*)$ is a weak$^*$-null sequence and both limits exist....

Full description

Saved in:
Bibliographic Details
Main Authors Cowell, S. R, Kalton, N. J
Format Journal Article
LanguageEnglish
Published 12.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to \infty} \|x^* + x_n^*\| = \lim_{n \to \infty} \|x^* - x_n^*\|$ whenever $x^* \in X^*$, $(x_n^*)$ is a weak$^*$-null sequence and both limits exist. If $X$ is reflexive then $Y$ can be assumed reflexive. These results provide the isometric counterparts of recent work of Johnson and Zheng.
AbstractList We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to \infty} \|x^* + x_n^*\| = \lim_{n \to \infty} \|x^* - x_n^*\|$ whenever $x^* \in X^*$, $(x_n^*)$ is a weak$^*$-null sequence and both limits exist. If $X$ is reflexive then $Y$ can be assumed reflexive. These results provide the isometric counterparts of recent work of Johnson and Zheng.
Author Cowell, S. R
Kalton, N. J
Author_xml – sequence: 1
  givenname: S. R
  surname: Cowell
  fullname: Cowell, S. R
– sequence: 2
  givenname: N. J
  surname: Kalton
  fullname: Kalton, N. J
BackLink https://doi.org/10.48550/arXiv.0809.2294$$DView paper in arXiv
BookMark eNotzr0KgzAUhuEM7dDa7oVC6Q1oY4yajCL9A6GLneWYEyGgUVRKvfv-Th_v8vEsycy2VhOy8anHRRjSA_RP8_CooNJjTPIF2SbD1HRjOxq1v1vVWjSjaS3UZpxWZF5BPej1fx2Sn455enGz2_maJpkLUchdDISmkc9iKhWvaFCVUPpcYYgMESuGEKPgTApU-l0xjyiUCKiVz6UqdeCQ3e_2iyu63jTQT8UHWXyQwQv1rjmf
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.0809.2294
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 0809_2294
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a654-d38e0612709c4f03fbab14cd5d2dddf2da7d84298dcef2d7460abdadec149cbe3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:38:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a654-d38e0612709c4f03fbab14cd5d2dddf2da7d84298dcef2d7460abdadec149cbe3
OpenAccessLink https://arxiv.org/abs/0809.2294
ParticipantIDs arxiv_primary_0809_2294
PublicationCentury 2000
PublicationDate 2008-09-12
PublicationDateYYYYMMDD 2008-09-12
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-12
  day: 12
PublicationDecade 2000
PublicationYear 2008
Score 1.4350644
SecondaryResourceType preprint
Snippet We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Functional Analysis
Title Asymptotic Unconditionality
URI https://arxiv.org/abs/0809.2294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61nVgQFe_yyMBqSBzn4bGqKBUSsLRStuics6UOlKoNFfx7zkmKWBh9Plk6W_J939n-DHCnpaTIGCe8WhsTFNRCa2sEkoqy0CHmztc7Xl7T2UI9F0nRg9v9WxjcfC13rT6w2T4wnNH3UmrVh76U_sbW01vRHjY2Slyd-68bI8zG8idFTI_gsMN2wbhdjCH07OoYRuPt9_u6_mBbsFgx-6RlW35j-HsC8-njfDIT3Y8EAtNECYpz6yFBFupKuTB2Bk2kKkpIEpGThBnlvMHnVFluZSoN0RCSrZiHVMbGpzBgUm_PIUh1bInRjNOxU84hJwkeAE3uCzEyMhdw1kRSrlvRidLHWPoYL__tGcHB_jZDJK9gUG8-7TWnzNrcNBP3A-7WbVc
link.rule.ids 228,230,783,888
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Unconditionality&rft.au=Cowell%2C+S.+R&rft.au=Kalton%2C+N.+J&rft.date=2008-09-12&rft_id=info:doi/10.48550%2Farxiv.0809.2294&rft.externalDocID=0809_2294