Asymptotic Unconditionality

We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to \infty} \|x^* + x_n^*\| = \lim_{n \to \infty} \|x^* - x_n^*\|$ whenever $x^* \in X^*$, $(x_n^*)$ is a weak$^*$-null sequence and both limits exist....

Full description

Saved in:
Bibliographic Details
Main Authors Cowell, S. R, Kalton, N. J
Format Journal Article
LanguageEnglish
Published 12.09.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We show that a separable real Banach space embeds almost isometrically in a space $Y$ with a shrinking 1-unconditional basis if and only if $\lim_{n \to \infty} \|x^* + x_n^*\| = \lim_{n \to \infty} \|x^* - x_n^*\|$ whenever $x^* \in X^*$, $(x_n^*)$ is a weak$^*$-null sequence and both limits exist. If $X$ is reflexive then $Y$ can be assumed reflexive. These results provide the isometric counterparts of recent work of Johnson and Zheng.
DOI:10.48550/arxiv.0809.2294