Holonomy on the principal $U(n)$ bundles over Grassmannian manifolds

Consider the principal $U(n)$ bundles over Grassmann manifolds $U(n)\rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m}$. Given $X \in U_{m,n}(\mathbb{C})$ and a 2-dimensional subspace $\mathfrak{m}' \subset \mathfrak{m} $ $ \subset \mathfrak{u}(m+n), $ assume either $\mathfrak{m}'$...

Full description

Saved in:
Bibliographic Details
Main Authors Byun, Taechang, Choi, Younggi
Format Journal Article
LanguageEnglish
Published 16.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Consider the principal $U(n)$ bundles over Grassmann manifolds $U(n)\rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m}$. Given $X \in U_{m,n}(\mathbb{C})$ and a 2-dimensional subspace $\mathfrak{m}' \subset \mathfrak{m} $ $ \subset \mathfrak{u}(m+n), $ assume either $\mathfrak{m}'$ is induced by $X,Y \in U_{m,n}(\mathbb{C})$ with $X^{*}Y = \mu I_n$ for some $\mu \in \mathbb{R}$ or by $X,iX \in U_{m,n}(\mathbb{C})$. Then $\mathfrak{m}'$ gives rise to a complete totally geodesic surface $S$ in the base space. Furthermore, let $\gamma$ be a piecewise smooth, simple closed curve on $S$ parametrized by $0\leq t\leq 1$, and $\widetilde{\gamma}$ its horizontal lift on the bundle $U(n) \rightarrow \pi^{-1}(S) \stackrel{\pi}{\rightarrow} S,$ which is immersed in $U(n) \rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m} $. Then $$ \widetilde{\gamma}(1)= \widetilde{\gamma}(0) \cdot ( e^{i \theta} I_n) \text{\quad or \quad } \widetilde{\gamma}(1)= \widetilde{\gamma}(0), $$ depending on whether the immersed bundle is flat or not, where $A(\gamma)$ is the area of the region on the surface $S$ surrounded by $\gamma$ and $\theta= 2 \cdot \tfrac{n+m}{2n} A(\gamma).$
AbstractList Consider the principal $U(n)$ bundles over Grassmann manifolds $U(n)\rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m}$. Given $X \in U_{m,n}(\mathbb{C})$ and a 2-dimensional subspace $\mathfrak{m}' \subset \mathfrak{m} $ $ \subset \mathfrak{u}(m+n), $ assume either $\mathfrak{m}'$ is induced by $X,Y \in U_{m,n}(\mathbb{C})$ with $X^{*}Y = \mu I_n$ for some $\mu \in \mathbb{R}$ or by $X,iX \in U_{m,n}(\mathbb{C})$. Then $\mathfrak{m}'$ gives rise to a complete totally geodesic surface $S$ in the base space. Furthermore, let $\gamma$ be a piecewise smooth, simple closed curve on $S$ parametrized by $0\leq t\leq 1$, and $\widetilde{\gamma}$ its horizontal lift on the bundle $U(n) \rightarrow \pi^{-1}(S) \stackrel{\pi}{\rightarrow} S,$ which is immersed in $U(n) \rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m} $. Then $$ \widetilde{\gamma}(1)= \widetilde{\gamma}(0) \cdot ( e^{i \theta} I_n) \text{\quad or \quad } \widetilde{\gamma}(1)= \widetilde{\gamma}(0), $$ depending on whether the immersed bundle is flat or not, where $A(\gamma)$ is the area of the region on the surface $S$ surrounded by $\gamma$ and $\theta= 2 \cdot \tfrac{n+m}{2n} A(\gamma).$
Author Byun, Taechang
Choi, Younggi
Author_xml – sequence: 1
  givenname: Taechang
  surname: Byun
  fullname: Byun, Taechang
– sequence: 2
  givenname: Younggi
  surname: Choi
  fullname: Choi, Younggi
BackLink https://doi.org/10.48550/arXiv.1206.3652$$DView paper in arXiv
BookMark eNotjz1PwzAYhD3AAIWdCXnoAEOCv21G1EKLVImlzNGb2BaWHLuyoaL_vmnhlme7u-caXaScHEJ3lLTCSEmeoPyGfUsZUS1Xkl2h5TrHnPJ4wDnh7y-HdyWkIewg4vnnQ3qc4_4n2egqzntX8KpArSOkFCDhicHnaOsNuvQQq7v95wxt3163i3Wz-Vi9L142DUxbjeOWCOV6pp2QbOgJHwzloInx4hzuNTXaeAuOS8uBCNMrRijh-lkoyWfo_q_2bNFNT0coh-5k051s-BHU3ETI
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1206.3652
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1206_3652
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a652-e3d046eb27e452cb03c813a708f4444443f71878fdae35d3a048b620103794653
IEDL.DBID GOX
IngestDate Mon Jan 08 05:38:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a652-e3d046eb27e452cb03c813a708f4444443f71878fdae35d3a048b620103794653
OpenAccessLink https://arxiv.org/abs/1206.3652
ParticipantIDs arxiv_primary_1206_3652
PublicationCentury 2000
PublicationDate 2012-06-16
PublicationDateYYYYMMDD 2012-06-16
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-16
  day: 16
PublicationDecade 2010
PublicationYear 2012
Score 1.5162212
SecondaryResourceType preprint
Snippet Consider the principal $U(n)$ bundles over Grassmann manifolds $U(n)\rightarrow U(n+m)/U(m) \stackrel{\pi}\rightarrow G_{n,m}$. Given $X \in...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Differential Geometry
Mathematics - Geometric Topology
Title Holonomy on the principal $U(n)$ bundles over Grassmannian manifolds
URI https://arxiv.org/abs/1206.3652
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELZKJxYE4l0eHjLAYEj8SjIioI2QgKWVskW2Y0tIkFZJi_j5nJ2AWPB4vsE-y_ew775DKKJM5DnnmiRacsK1cERxKYnxdJlnjoeq9-cXWSz4UynKEbr8qYVR7dfbZ48PrLvbhMbyhkkBOnaLUp-xNXst-8_GgMQ1sP-ygYcZKH9MxHQX7Qy-Hb7rD2MPjWyzjx4KUC--cAAvGwzeFl71z9vAGC2umusI640HOuiwT6bEsxa82Q_fSEg12GNTuOV73R2g-fRxfl-QoXUBUbAMYlkNcScEranlghodM5MlTKUx7D0M5sAmpJmrlWWiZgrukZb-Y5p5wHfBDtEYon97jLBlmUkTHWvg5bK2ypkY5GoNlzTXPDtBR2HL1apHp6i8MCovjNN_ZyZom4auDv4l4QyN1-3GnoNtXeuLIOFvvRN4Eg
link.rule.ids 228,230,786,891
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holonomy+on+the+principal+%24U%28n%29%24+bundles+over+Grassmannian+manifolds&rft.au=Byun%2C+Taechang&rft.au=Choi%2C+Younggi&rft.date=2012-06-16&rft_id=info:doi/10.48550%2Farxiv.1206.3652&rft.externalDocID=1206_3652