Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test

Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profilin...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 89; no. 15; pp. 8004 - 8012
Main Authors Monsonis Centelles, Sandra, Hoefsloot, Huub C. J, Khakimov, Bekzod, Ebrahimi, Parvaneh, Lind, Mads V, Kristensen, Mette, de Roo, Niels, Jacobs, Doris M, van Duynhoven, John, Cannet, Claire, Fang, Fang, Humpfer, Eberhard, Schäfer, Hartmut, Spraul, Manfred, Engelsen, Søren B, Smilde, Age K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4–0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
AbstractList Lipoprotein profiling of human blood by ¹H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4–0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
Lipoprotein profiling of human blood by H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4-0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
Lipoprotein profiling of human blood by 1 H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states in medicine and nutrition. However, lack of standardization of measurement protocols has prevented the use of NMR-based lipoprotein profiling in metastudies. In this study, a standardized NMR measurement protocol was applied in a ring test performed across three different laboratories in Europe on plasma and serum samples from 28 individuals. Data was evaluated in terms of (i) spectral differences, (ii) differences in LPD predictions obtained using an existing prediction model, and (iii) agreement of predictions with cholesterol concentrations in high- and low-density lipoproteins (HDL and LDL) particles measured by standardized clinical assays. ANOVA-simultaneous component analysis (ASCA) of the ring test spectral ensemble that contains methylene and methyl peaks (1.4–0.6 ppm) showed that 97.99% of the variance in the data is related to subject, 1.62% to sample type (serum or plasma), and 0.39% to laboratory. This interlaboratory variation is in fact smaller than the maximum acceptable intralaboratory variation on quality control samples. It is also shown that the reproducibility between laboratories is good enough for the LPD predictions to be exchangeable when the standardized NMR measurement protocol is followed. With the successful implementation of this protocol, which results in reproducible prediction of lipoprotein distributions across laboratories, a step is taken toward bringing NMR more into scope of prognostic and diagnostic biomarkers, reducing the need for less efficient methods such as ultracentrifugation or high-performance liquid chromatography (HPLC).
Author Kristensen, Mette
Fang, Fang
Khakimov, Bekzod
Monsonis Centelles, Sandra
van Duynhoven, John
Spraul, Manfred
Jacobs, Doris M
de Roo, Niels
Cannet, Claire
Smilde, Age K
Ebrahimi, Parvaneh
Humpfer, Eberhard
Hoefsloot, Huub C. J
Lind, Mads V
Engelsen, Søren B
Schäfer, Hartmut
AuthorAffiliation Swammerdam Institute for Life Sciences
Laboratory of Biophysics
Department of Nutrition, Exercise and Sports
University of Copenhagen
Universiteit van Amsterdam
Department of Food Science, Chemometrics and Analytical Technology, Faculty of Science
Unilever R&D
Wageningen University
AuthorAffiliation_xml – name: Swammerdam Institute for Life Sciences
– name: Laboratory of Biophysics
– name: Department of Nutrition, Exercise and Sports
– name: Universiteit van Amsterdam
– name: Unilever R&D
– name: Wageningen University
– name: University of Copenhagen
– name: Department of Food Science, Chemometrics and Analytical Technology, Faculty of Science
Author_xml – sequence: 1
  givenname: Sandra
  orcidid: 0000-0003-2539-8134
  surname: Monsonis Centelles
  fullname: Monsonis Centelles, Sandra
  email: S.MonsonisCentelles@uva.nl
  organization: Universiteit van Amsterdam
– sequence: 2
  givenname: Huub C. J
  surname: Hoefsloot
  fullname: Hoefsloot, Huub C. J
  organization: Universiteit van Amsterdam
– sequence: 3
  givenname: Bekzod
  surname: Khakimov
  fullname: Khakimov, Bekzod
– sequence: 4
  givenname: Parvaneh
  surname: Ebrahimi
  fullname: Ebrahimi, Parvaneh
– sequence: 5
  givenname: Mads V
  surname: Lind
  fullname: Lind, Mads V
– sequence: 6
  givenname: Mette
  surname: Kristensen
  fullname: Kristensen, Mette
– sequence: 7
  givenname: Niels
  surname: de Roo
  fullname: de Roo, Niels
  organization: Unilever R&D
– sequence: 8
  givenname: Doris M
  surname: Jacobs
  fullname: Jacobs, Doris M
  organization: Unilever R&D
– sequence: 9
  givenname: John
  surname: van Duynhoven
  fullname: van Duynhoven, John
  organization: Wageningen University
– sequence: 10
  givenname: Claire
  surname: Cannet
  fullname: Cannet, Claire
– sequence: 11
  givenname: Fang
  surname: Fang
  fullname: Fang, Fang
– sequence: 12
  givenname: Eberhard
  surname: Humpfer
  fullname: Humpfer, Eberhard
– sequence: 13
  givenname: Hartmut
  surname: Schäfer
  fullname: Schäfer, Hartmut
– sequence: 14
  givenname: Manfred
  surname: Spraul
  fullname: Spraul, Manfred
– sequence: 15
  givenname: Søren B
  surname: Engelsen
  fullname: Engelsen, Søren B
– sequence: 16
  givenname: Age K
  surname: Smilde
  fullname: Smilde, Age K
  organization: Universiteit van Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28692288$$D View this record in MEDLINE/PubMed
oai:portal.research.lu.se:publications/d6af5191-ff9a-4365-a698-fd6c5e30e59a$$DView record from Swedish Publication Index
BookMark eNqFUl1PFDEUnRiMfOg_MKaJL77s2u-Z4cEEiQoJKkF8bu507kBJt13bGTf8e7ssiPAgT01uzzn39PTsVlshBqyq14zOGeXsPdg8hwDeXuJiXneUCd4-q3aY4nSmm4ZvVTuUUjHjNaXb1W7OV5QyRpl-UW3zRrecN81OFc7jClJPztA76DySE7eMyxRHdIGcQhqdLcPThL2zo4shkyHFBfn29Yz8WKIdE5A4kKNpAYF89DH2--QgkOMwYvLQxQRjTNfkzIULco55fFk9H8BnfHV77lU_P386PzyanXz_cnx4cDIDrdg4w543bQ_ARSdw6FtbNwMgrbmgdrBaaKZQs6HXPZNUsoZz2XSScQV1o_uuFXvV_kZ3BRcYynYMJkCyLpsIznjXJUjXZjUlE_z6WE5dNorLWjWFDBtyXmGZm2VyizV6zVzGNII3CTMWuUvjJ5PRFJR3Fm4CMr2GQbGWmWFowUihlQHdNqbYtQoFRdVC2fFhs6NQF9hbDCVK_3DVg5vgLs1F_G2UkuWndRF4dyuQ4q-pRGsWLlv0HgLGKRtevlqwRkr1JLR4rVstpKgL9O0j6FWcUmnZGlUWC8mYLKg3_5r_6_quVvfx2xRzTjgY68abeMpbnDeMmnWHTemwueuwue1wIctH5Dv9J2h0Q1vf3rv-H-UPwHAN5A
CitedBy_id crossref_primary_10_1007_s11306_023_02005_x
crossref_primary_10_1016_j_aca_2020_02_025
crossref_primary_10_1021_acs_jproteome_1c00935
crossref_primary_10_3390_nu14235043
crossref_primary_10_1186_s12950_023_00358_7
crossref_primary_10_1016_j_compbiomed_2024_109379
crossref_primary_10_1021_acs_jproteome_1c00458
crossref_primary_10_1016_j_scp_2021_100474
crossref_primary_10_1158_1078_0432_CCR_23_3608
crossref_primary_10_1016_j_trac_2017_07_009
crossref_primary_10_3390_diagnostics12071675
crossref_primary_10_1042_ETLS20200259
crossref_primary_10_1016_j_cca_2021_06_012
crossref_primary_10_1007_s11306_021_01797_0
crossref_primary_10_1515_cclm_2019_0729
crossref_primary_10_1016_j_clinbiochem_2020_10_014
crossref_primary_10_3390_ijms22094687
crossref_primary_10_1002_mnfr_70007
crossref_primary_10_1021_acs_jproteome_3c00717
crossref_primary_10_1002_nbm_3927
crossref_primary_10_1016_j_envpol_2022_119664
crossref_primary_10_1016_j_cbpa_2022_102256
crossref_primary_10_1021_acs_jproteome_0c00876
crossref_primary_10_3390_metabo13020273
crossref_primary_10_1021_acs_analchem_1c01654
crossref_primary_10_1021_acs_jproteome_0c00815
crossref_primary_10_3390_metabo11050283
crossref_primary_10_1016_j_pnmrs_2023_10_002
crossref_primary_10_3389_fmolb_2017_00059
crossref_primary_10_1186_s13023_021_02075_x
crossref_primary_10_3390_metabo11050326
crossref_primary_10_1016_j_numecd_2023_03_025
crossref_primary_10_1016_j_talanta_2020_120855
crossref_primary_10_1007_s00394_024_03451_6
crossref_primary_10_1161_JAHA_124_034364
crossref_primary_10_3389_fnut_2023_1198531
crossref_primary_10_1186_s13023_020_1329_5
crossref_primary_10_3390_molecules23010160
crossref_primary_10_3233_MNM_180268
crossref_primary_10_3390_cancers13225845
crossref_primary_10_1021_acs_analchem_1c04576
crossref_primary_10_1136_thoraxjnl_2018_212144
crossref_primary_10_3389_fphys_2022_931931
crossref_primary_10_3390_biomedicines8090359
crossref_primary_10_3390_diagnostics12030559
crossref_primary_10_1021_acs_analchem_8b02412
crossref_primary_10_1186_s12986_023_00728_1
Cites_doi 10.1021/ja055336t
10.1007/s11306-010-0234-7
10.1021/ac503651e
10.1161/CIRCULATIONAHA.108.809582
10.1016/j.cll.2006.07.006
10.1161/01.ATV.0000155017.60171.88
10.1093/clinchem/28.9.1873
10.1016/0167-4838(90)90100-T
10.1021/ac402571z
10.1016/j.jmr.2009.11.012
10.1016/0731-7085(93)80145-Q
10.1161/CIRCGENETICS.114.000216
10.1186/1743-7075-7-43
10.1021/ac0517085
10.1021/ac5025039
10.14533/jbm.13.21
10.1016/S0022-2275(20)39710-8
10.1371/journal.pone.0016957
10.1038/nbt.3474
10.1038/nprot.2007.376
10.1007/s11306-010-0200-4
10.1161/circ.106.25.3143
10.3945/jn.114.192229
10.1016/j.pnmrs.2016.03.001
10.1373/clinchem.2004.046748
10.1002/cem.952
10.1021/acs.analchem.6b00442
10.1021/ac981422i
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright American Chemical Society Aug 1, 2017
Copyright © 2017 American Chemical Society 2017 American Chemical Society
Wageningen University & Research
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: Copyright American Chemical Society Aug 1, 2017
– notice: Copyright © 2017 American Chemical Society 2017 American Chemical Society
– notice: Wageningen University & Research
CorporateAuthor Strategiska forskningsområden (SFO)
EpiHealth: Epidemiology for Health
Strategic research areas (SRA)
Profile areas and other strong research environments
Lunds universitet
Lund University
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: EpiHealth: Epidemiology for Health
– name: Strategic research areas (SRA)
– name: Lunds universitet
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D95
QVL
DOI 10.1021/acs.analchem.7b01329
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic


Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 8012
ExternalDocumentID oai_library_wur_nl_wurpubs_524758
oai_portal_research_lu_se_publications_d6af5191_ff9a_4365_a698_fd6c5e30e59a
PMC5541326
28692288
10_1021_acs_analchem_7b01329
b562430489
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID -
.K2
02
1AW
23M
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D95
08R
186
1WB
2KS
3EH
3O-
6XO
AAUTI
ABDEX
ACKIV
ACPVT
AETEA
AFDAS
AFFDN
AFFNX
AFMIJ
AIDAL
ANTXH
G8K
GJ
HR
K78
LG6
MVM
NHB
OHM
OHT
OMK
QVL
RNS
TAF
UBX
UQL
VOH
YQI
YQJ
YXE
ZCG
ZE2
ZGI
ID FETCH-LOGICAL-a651t-ed289daa23b3efd9c78fae07230cfc63615e61fd6d1404182248b4125a786db93
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Tue Jan 05 18:10:33 EST 2021
Thu Aug 21 06:56:11 EDT 2025
Thu Aug 21 14:31:58 EDT 2025
Fri Jul 11 00:33:10 EDT 2025
Thu Jul 10 23:36:41 EDT 2025
Mon Jun 30 10:23:51 EDT 2025
Mon Jul 21 05:47:30 EDT 2025
Thu Jul 03 08:37:32 EDT 2025
Thu Apr 24 23:08:05 EDT 2025
Thu Aug 27 13:51:34 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a651t-ed289daa23b3efd9c78fae07230cfc63615e61fd6d1404182248b4125a786db93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2539-8134
OpenAccessLink http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F524758
PMID 28692288
PQID 1941334114
PQPubID 45400
PageCount 9
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_524758
swepub_primary_oai_portal_research_lu_se_publications_d6af5191_ff9a_4365_a698_fd6c5e30e59a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5541326
proquest_miscellaneous_2101318445
proquest_miscellaneous_1917963437
proquest_journals_1941334114
pubmed_primary_28692288
crossref_citationtrail_10_1021_acs_analchem_7b01329
crossref_primary_10_1021_acs_analchem_7b01329
acs_journals_10_1021_acs_analchem_7b01329
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
QVL
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
Toshima G. (ref17/cit17) 2013; 13
Bock J. L. (ref1/cit1) 1982; 28
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
Kulkarni K. R. (ref16/cit16) 1995; 35
ref28/cit28
ref20/cit20
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref24/cit24
NCEP ATP III (ref27/cit27) 2002; 106
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1021/ja055336t
– ident: ref5/cit5
  doi: 10.1007/s11306-010-0234-7
– ident: ref10/cit10
  doi: 10.1021/ac503651e
– ident: ref13/cit13
  doi: 10.1161/CIRCULATIONAHA.108.809582
– ident: ref19/cit19
  doi: 10.1016/j.cll.2006.07.006
– ident: ref15/cit15
  doi: 10.1161/01.ATV.0000155017.60171.88
– volume: 28
  start-page: 1873
  issue: 9
  year: 1982
  ident: ref1/cit1
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/28.9.1873
– ident: ref14/cit14
  doi: 10.1016/0167-4838(90)90100-T
– ident: ref9/cit9
  doi: 10.1021/ac402571z
– ident: ref25/cit25
  doi: 10.1016/j.jmr.2009.11.012
– ident: ref7/cit7
  doi: 10.1016/0731-7085(93)80145-Q
– ident: ref2/cit2
  doi: 10.1161/CIRCGENETICS.114.000216
– ident: ref11/cit11
  doi: 10.1186/1743-7075-7-43
– ident: ref18/cit18
  doi: 10.1021/ac0517085
– ident: ref6/cit6
  doi: 10.1021/ac5025039
– volume: 13
  start-page: 21
  issue: 2
  year: 2013
  ident: ref17/cit17
  publication-title: J. Biol. Macromol.
  doi: 10.14533/jbm.13.21
– volume: 35
  start-page: 2291
  year: 1995
  ident: ref16/cit16
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)39710-8
– ident: ref8/cit8
  doi: 10.1371/journal.pone.0016957
– ident: ref21/cit21
  doi: 10.1038/nbt.3474
– ident: ref22/cit22
  doi: 10.1038/nprot.2007.376
– ident: ref20/cit20
  doi: 10.1007/s11306-010-0200-4
– volume: 106
  start-page: 3143
  year: 2002
  ident: ref27/cit27
  publication-title: Circulation
  doi: 10.1161/circ.106.25.3143
– ident: ref28/cit28
  doi: 10.3945/jn.114.192229
– ident: ref4/cit4
  doi: 10.1016/j.pnmrs.2016.03.001
– ident: ref12/cit12
  doi: 10.1373/clinchem.2004.046748
– ident: ref26/cit26
  doi: 10.1002/cem.952
– ident: ref3/cit3
  doi: 10.1021/acs.analchem.6b00442
– ident: ref24/cit24
  doi: 10.1021/ac981422i
SSID ssj0011016
Score 2.446936
Snippet Lipoprotein profiling of human blood by 1H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states...
Lipoprotein profiling of human blood by H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states...
Lipoprotein profiling of human blood by ¹H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease states...
Lipoprotein profiling of human blood by 1 H nuclear magnetic resonance (NMR) spectroscopy is a rapid and promising approach to monitor health and disease...
SourceID wageningen
swepub
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8004
SubjectTerms Adult
Analytical chemistry
Biofysica
Biomarkers
Biophysics
Blood
blood serum
Chemistry
Cholesterol
Diagnostic systems
Europe
Female
High density lipoprotein
High performance liquid chromatography
Humans
Laboratories
Laboratories - standards
Laboratorium voor Biofysica
Least-Squares Analysis
Lipoproteins
Lipoproteins, HDL - blood
Lipoproteins, LDL - blood
Lipoproteins, VLDL - blood
Liquid chromatography
Low density lipoprotein
Measurement
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Nutrition
prediction
Prediction models
Pregnancy
Principal Component Analysis
Proton Magnetic Resonance Spectroscopy - standards
Quality control
Reliability
Reproducibility
Spectra
Spectroscopy
Standardization
Ultracentrifugation
variance
Variance analysis
VLAG
Young Adult
Title Toward Reliable Lipoprotein Particle Predictions from NMR Spectra of Human Blood: An Interlaboratory Ring Test
URI http://dx.doi.org/10.1021/acs.analchem.7b01329
https://www.ncbi.nlm.nih.gov/pubmed/28692288
https://www.proquest.com/docview/1941334114
https://www.proquest.com/docview/1917963437
https://www.proquest.com/docview/2101318445
https://pubmed.ncbi.nlm.nih.gov/PMC5541326
oai:portal.research.lu.se:publications/d6af5191-ff9a-4365-a698-fd6c5e30e59a
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F524758
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgPLA98DG-AgMZiRceUhrHdmzeSsU0IRjT6KSJF8txbK2iOFXTaoK_nrObdC3VNHiKlNiOfT7bd7673yH0hhZMGymDEwOTKbXCpmUJmyGtbEGlY4baiPZ5zI_O6Kdzdn6lKP5twSfZO22angaiwhh-9opwbUfkbXSHcFEEZWsw_LayGgRNtMuQFwyqXajcNa2EA8k0mwfSlpS57SzZQoruod1LWPI-xkCtnUmH99HXLrJn6Yryo7eYlz3zexvo8R-H-wDda8VTPFjy00N0y_p9dHfYZYXbR3trAIaPkB9Fr1scHJtDDBb-PJ7WEfph7PFJy5X4ZBasQZHBcQhnwcdfTnFIfA8jxbXD0ZCAPwQX-vd44HG8pWy5s579wqfwLzwCcj1GZ4cfR8OjtM3gkGrOsnlqK9DnKq1JXubWVdIUwmnbL0DvMc7wHMQpyzNX8Sqg_GTBo1WUFGQuXQhelTJ_gnZ87e0zhHNqeN_oUlRSUtCZSlYaKqhwzhKnHUnQWyCdaldgo6JxnWQqvOzoqVp6JijvplyZFgo9ZOSY3FArXdWaLqFAbih_0HHTWrckSA0gOWQ0Qa9Xn2EOg51Ge1svQhnYJXlO8-L6MqCpZ7AdU8oS9HTJoKtOEcElIUIkqNhg3VWBACm--cWPLyK0OAiX0HWeoO9LJt-sEhVC1aJQXajJQjVWTdeul1XFtQOdIFPOSa1ozpnSXAoFU2yYzfuWSQ3Uv1o4yoeUWU1sv723VJeLmfKT8IC2G8UIbCji-X_M7wu0S4L0Ff00D9DOfLawL0F2nJev4obxB2IVcYw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeNj2wMf4CgwwEi88tDSJ7di8lYqpQFdNW4cmXiwnsbWKklZNqwn-eu7cJGuZpmlPkRLbsc_n853v7mdC3rOEm0wpDGLgqsWstK00BWHIcpsw5XjGrEf7HIr-Gft2zs-3CK9zYaATJbRUeif-FbpA-BHfGaAtDOV3O8HTu0jdI_dBH4nQ5ur2ThvnARqk9UV56FetM-ZuaAX3pazc3JeuKZvXYyYrZNE9snsJK7_wqVBrW9PhQ_KjGZSPSPnVXi7Sdvb3P7zHO4_6EXlQKau0u-Kux2TLFvtkp1ffEbdP9tbgDJ-QYuRjcCmGOWNGFh2MZ1MPBDEu6HHFo_R4jr4hz-4Uk1vo8OiEnmLC59zQqaPerUA_Y0D9J9otqD-zrHh1Ov9DT-BfdARUe0rODr-Mev1WdZ9DywgeLlo2B-suNyaK09i6XGWJdMZ2ErCCMpeJGJQrK0KXixwxf0KMb5UpAw3MJFLkqYqfke1iWtgXhMYsE53MpDJXioEFlfI0Y5JJ52zkjIsC8gFIp6v1WGrvao9CjS9reuqKngGJ65nXWQWMjvdzTG6p1WpqzVbAILeUP6iZaq1bCnQI0CNCFpB3zWeYQ_TamMJOl1gGZKaIWZzcXAbs9hCEM2M8IM9XfNp0KpJCRZGUAUk2OLgpgADjm1-K8YUHGgdVE7ouAvJzxeubVbx5qCtMqgs9WerS6tnaYbPOhXFgIYTaOWU0iwXXRiipYYozbuOO5coA9a_Wjy7wAq3St1-dYurL5VwXE3zgKtE8AvEiX95hft-Snf7oaKAHX4ffX5HdCPUyH8F5QLYX86V9DVrlIn3jZcg_Xwp57Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSLA98DG-AgOMxAsPKU3iODZvpVANGFW1D2nai-U4tlZR0qppNcFfz52bhJZpmuApUmI79vls3_nufkfIG5al2kiJTgypDJkVNsxz2AxZYTMmXWqY9WifQ75_wr6cpqdrqb6gExW0VHkjPq7qWeFqhIHoHb7XQF8Yzo9Ohjd4sbxJbqHlDvWuXv-oNSCgUtoky0PbahM1d0UreDaZavNsuiRwXvabrNFFd8j2Baz-0odDrR1Pg3vkrB2Y90r53lku8o759Rfm43-N_D65WwuttLfisgfkhi13yZ1-kytul-yswRo-JOWx98Wl6O6MkVn0YDybekCIcUlHNa_S0RxtRJ7tKQa50OG3Q3qEgZ9zTaeOevMC_YCO9e9pr6T-7rLm2en8Jz2Ef9FjoNwjcjL4dNzfD-u8DqHmabQIbQFaXqF1nOSJdYU0mXDadjPQhowzPAEhy_LIFbxA7J8I_VxFzkAS05ngRS6Tx2SrnJb2KaEJM7xrdC4KKRloUnmaGyaYcM7GTrs4IG-BdKpel5XyJvc4Uviyoaeq6RmQpJl9ZWqAdMzTMbmmVtjWmq0AQq4pv9cw1lq3JMgSIE9ELCCv288wh2i90aWdLrEM7J08YUl2dRnQ3yPYpBlLA_Jkxattp2LBZRwLEZBsg4vbAgg0vvmlHJ97wHEQOaHrPCBnK37frOLVRFVjU52ryVJVVs3WLp1VwbUDTSFSzkmtWMJTpbkUCqbYpDbp2lRqoP6fNaRKTKRV-fbr20x1sZyrcoIPXCkqjWGbEc_-YX5fkdujjwN18Hn49TnZjlE8846ce2RrMV_aFyBcLvKXfhv5DQOMfHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Reliable+Lipoprotein+Particle+Predictions+from+NMR+Spectra+of+Human+Blood+%3A+An+Interlaboratory+Ring+Test&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Monsonis+Centelles%2C+Sandra&rft.au=Hoefsloot%2C+Huub+C.J&rft.au=Khakimov%2C+Bekzod&rft.au=Ebrahimi%2C+Parvaneh&rft.date=2017-08-01&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=89&rft.issue=15&rft_id=info:doi/10.1021%2Facs.analchem.7b01329&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_524758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon