Formation of Supported Lipid Bilayers by Vesicle Fusion: Effect of Deposition Temperature

We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phas...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 30; no. 25; pp. 7259 - 7263
Main Authors Lind, Tania Kjellerup, Cárdenas, Marité, Wacklin, Hanna Pauliina
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (T m) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above T m by neutron reflection and investigated the effect of subsequent cooling to below the T m. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid T m. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
AbstractList We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (T-m) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above T-m by neutron reflection and investigated the effect of subsequent cooling to below the T-m. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid T-m. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tₘ) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tₘ by neutron reflection and investigated the effect of subsequent cooling to below the Tₘ. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tₘ. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.
Author Cárdenas, Marité
Lind, Tania Kjellerup
Wacklin, Hanna Pauliina
AuthorAffiliation Malmoe University
Nano-Science Center and Institute of Chemistry
Health & Society
Copenhagen University
AuthorAffiliation_xml – name: Health & Society
– name: Malmoe University
– name: Copenhagen University
– name: Nano-Science Center and Institute of Chemistry
Author_xml – sequence: 1
  givenname: Tania Kjellerup
  surname: Lind
  fullname: Lind, Tania Kjellerup
  email: tania@nano.ku.dk
– sequence: 2
  givenname: Marité
  surname: Cárdenas
  fullname: Cárdenas, Marité
  email: marite.cardenas@mah.se, cardenas@nano.ku.dk
– sequence: 3
  givenname: Hanna Pauliina
  surname: Wacklin
  fullname: Wacklin, Hanna Pauliina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24932971$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-4792$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/4602814$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/46002feb-e68a-4297-acc1-c62ba0a8ec8d$$DView record from Swedish Publication Index
BookMark eNqNkk1v1DAQhi1URLeFA38A5YIEQkttx45tbqXtAtJKHCiVOFkTZwKuknVqx4L992Q_2ANqBQfLl2ee8YzfE3K0Cisk5Dmjbxnl7KwDSak26tcjMmOS07nUXB2RGVWinCtRlcfkJKVbSqkphXlCjrkwJTeKzci3RYg9jD6sitAWX_IwhDhiUyz94Jvive9gjTEV9bq4weRdh8Uip4l-V1y1LbpxU3WJQ0h-67jGfsAIY474lDxuoUv4bH-fkq-Lq-uLj_Pl5w-fLs6Xc6iEGOeV4lTwhtcCsNSSu7Y1RtdCSyWQgmLG0LJy2ErNDFKnGqcFqxVApZVrdXlKYOdNP3HItR2i7yGubQBvN8NAZyMmhOh-2C7bhHaiOu-2QycrKkp5i7XFSoMV01YsOMesq3gNFDQ63Uw9lg_26PIwnXrv_k_dmwd1l_7m3Ib43faQrVCGT_SrHT3EcJcxjbb3yWHXwQpDTpZP_yorSaX8J8qk4BtSbawv9miue2wOb_gTjQl4vQNcDClFbA8Io3YTO3uI3cSe_cU6P24XPEbw3b0VL3cV4JK9DTmupozcw_0Gm4PnEg
CitedBy_id crossref_primary_10_3390_coatings10100981
crossref_primary_10_1021_acs_analchem_9b04125
crossref_primary_10_1016_j_jcis_2017_03_018
crossref_primary_10_3390_bios13020189
crossref_primary_10_3390_membranes14040079
crossref_primary_10_1016_j_bbamem_2014_10_019
crossref_primary_10_1016_j_jcis_2024_10_112
crossref_primary_10_1021_acs_langmuir_7b03212
crossref_primary_10_3390_nano14181489
crossref_primary_10_1021_acs_jpcb_1c04615
crossref_primary_10_1039_C6CP06258J
crossref_primary_10_1116_1_4963188
crossref_primary_10_1021_acs_langmuir_3c02160
crossref_primary_10_1002_adfm_202315166
crossref_primary_10_1088_1361_6528_aa5d77
crossref_primary_10_1021_acs_jpcb_6b05433
crossref_primary_10_1063_1_4968215
crossref_primary_10_1021_acs_langmuir_0c02516
crossref_primary_10_1021_acsami_3c03526
crossref_primary_10_1039_C9SM01066A
crossref_primary_10_1016_j_apmt_2021_101183
crossref_primary_10_1021_acs_langmuir_4c04405
crossref_primary_10_2116_analsci_20P068
crossref_primary_10_3390_membranes14100215
crossref_primary_10_1252_kakoronbunshu_48_175
crossref_primary_10_3390_molecules20010738
crossref_primary_10_1016_j_colsurfb_2021_112161
crossref_primary_10_1021_acs_langmuir_7b02764
crossref_primary_10_1116_6_0003312
crossref_primary_10_1021_acs_jpcc_8b06566
crossref_primary_10_5650_oleoscience_19_13
crossref_primary_10_1016_j_colsurfb_2016_02_040
crossref_primary_10_3389_frsfm_2023_1339496
crossref_primary_10_1016_j_jcis_2023_04_137
crossref_primary_10_1021_acsomega_9b01075
crossref_primary_10_1002_admi_201901787
crossref_primary_10_1016_j_jcis_2019_11_102
crossref_primary_10_1002_adfm_201704356
crossref_primary_10_1016_j_jcis_2024_05_066
crossref_primary_10_1021_acs_jpcb_7b00500
crossref_primary_10_1021_acs_langmuir_0c01810
crossref_primary_10_1021_acs_langmuir_1c01707
crossref_primary_10_3390_bios14060270
crossref_primary_10_1016_j_bbamem_2015_05_015
crossref_primary_10_1016_j_jcis_2024_03_055
crossref_primary_10_1021_acs_langmuir_5b03605
crossref_primary_10_1021_acsabm_0c01180
crossref_primary_10_1021_acsami_9b09988
crossref_primary_10_1002_macp_202200237
crossref_primary_10_3390_membranes12100906
crossref_primary_10_1021_acs_langmuir_7b02459
crossref_primary_10_1021_acs_jpcb_4c05451
crossref_primary_10_1016_j_jcis_2023_10_082
crossref_primary_10_3390_chemistry6050074
crossref_primary_10_1016_j_molliq_2020_114492
crossref_primary_10_1116_6_0001029
crossref_primary_10_1016_j_ijbiomac_2018_03_078
crossref_primary_10_3390_membranes13030320
crossref_primary_10_1039_D1RA01920A
crossref_primary_10_1007_s10853_023_08394_7
crossref_primary_10_1016_j_colsurfa_2023_131125
crossref_primary_10_1039_C9CP02085C
crossref_primary_10_1021_acs_langmuir_8b03597
crossref_primary_10_1021_acs_analchem_2c02833
crossref_primary_10_1002_pro_4987
crossref_primary_10_1038_s41598_019_49210_0
crossref_primary_10_3389_fchem_2019_00343
crossref_primary_10_3390_mi14020372
crossref_primary_10_1021_acs_jpcb_7b08359
crossref_primary_10_1002_adfm_202414534
crossref_primary_10_1016_j_bpj_2017_05_049
crossref_primary_10_1371_journal_pone_0144671
crossref_primary_10_1116_1_4944830
crossref_primary_10_1021_acs_nanolett_6b04493
crossref_primary_10_1016_j_cis_2020_102118
crossref_primary_10_1021_la504267g
crossref_primary_10_1021_acs_langmuir_8b03504
crossref_primary_10_1021_acs_langmuir_9b03897
crossref_primary_10_1007_s00249_015_1068_z
Cites_doi 10.1021/la063476q
10.1021/ja903375m
10.1007/s003390201611
10.1021/la0263920
10.1016/S0006-3495(03)74722-5
10.1016/S0006-3495(98)77563-0
10.1529/biophysj.104.053728
10.1016/S0304-4157(00)00006-X
10.1529/biophysj.103.036681
10.1116/1.2896113
10.1038/nprot.2010.65
10.1016/j.bbamem.2006.09.028
10.1016/S0304-4157(00)00016-2
10.1021/la047389e
10.1107/S0021889806005073
10.1021/la102151p
10.1021/nn403367c
10.1016/j.bbamem.2006.03.025
10.1007/s00249-012-0796-6
10.1140/epjp/i2011-11107-8
10.1016/j.colsurfb.2005.11.025
10.1021/la200683e
10.1021/ja01309a011
10.1021/jp053482f
10.1021/nl034590l
10.1021/la052687c
10.1039/c2sm00013j
10.1021/nn404530z
10.1021/la034232y
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
AGCHP
D95
DOI 10.1021/la500897x
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
SWEPUB Lunds universitet full text
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA



Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 7263
ExternalDocumentID oai_portal_research_lu_se_publications_46002feb_e68a_4297_acc1_c62ba0a8ec8d
oai_lup_lub_lu_se_46002feb_e68a_4297_acc1_c62ba0a8ec8d
oai_DiVA_org_mau_4792
24932971
10_1021_la500897x
c436404796
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
N~.
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
.HR
186
1WB
6TJ
ABHMW
ACRPL
ADNMO
ADTPV
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
AOWAS
D8T
ZZAVC
AGCHP
D95
ID FETCH-LOGICAL-a644t-672042d2b4ae3852cff998b48574e0a7199036cef5819e0c7dc841b7aa687cf83
IEDL.DBID N~.
ISSN 0743-7463
1520-5827
IngestDate Wed Aug 27 04:08:33 EDT 2025
Thu Jul 03 05:23:47 EDT 2025
Thu Aug 21 06:27:46 EDT 2025
Fri Jul 11 15:21:49 EDT 2025
Fri Jul 11 04:19:17 EDT 2025
Thu Jan 02 22:14:46 EST 2025
Tue Jul 01 02:30:28 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Thu Aug 27 13:43:11 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a644t-672042d2b4ae3852cff998b48574e0a7199036cef5819e0c7dc841b7aa687cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/la500897x
PMID 24932971
PQID 1542650572
PQPubID 23479
PageCount 5
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_46002feb_e68a_4297_acc1_c62ba0a8ec8d
swepub_primary_oai_lup_lub_lu_se_46002feb_e68a_4297_acc1_c62ba0a8ec8d
swepub_primary_oai_DiVA_org_mau_4792
proquest_miscellaneous_2000565055
proquest_miscellaneous_1542650572
pubmed_primary_24932971
crossref_primary_10_1021_la500897x
crossref_citationtrail_10_1021_la500897x
acs_journals_10_1021_la500897x
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Ollivon M. (ref6/cit6) 2000; 1508
Nelson A. (ref25/cit25) 2006; 39
Kataoka-Hamai C. (ref7/cit7) 2010; 26
Fernandez D. I. (ref3/cit3) 2013; 42
Vacklin H. P. (ref24/cit24) 2005; 21
Nagle J. F. (ref27/cit27) 2000; 1469
Seantier B. (ref29/cit29) 2004; 4
Armen R. S. (ref28/cit28) 1998; 75
Eeman M. (ref1/cit1) 2010; 14
Bernchou U. (ref14/cit14) 2009; 131
Blodgett K. B. (ref8/cit8) 1935; 57
Campbell R. A. (ref22/cit22) 2011; 126
Dodd C. E. (ref17/cit17) 2008; 3
Tian C. (ref18/cit18) 2006; 1758
Richter R. P. (ref9/cit9) 2005; 88
Richter R. P. (ref10/cit10) 2006; 22
Cubitt R. (ref23/cit23) 2002; 74
Richter R. (ref5/cit5) 2003; 85
Wacklin H. P. (ref13/cit13) 2007; 23
Domenech O. (ref19/cit19) 2006; 47
Andrecka J. (ref15/cit15) 2013; 7
Lind T. K. (ref4/cit4) 2014; 8
Reimhult E. (ref26/cit26) 2003; 19
Åkesson A. (ref11/cit11) 2012; 8
Balashev K. (ref2/cit2) 2007; 1768
Merino S. (ref20/cit20) 2003; 19
Cho N.-J. (ref21/cit21) 2010; 5
Leonenko Z. V. (ref30/cit30) 2004; 86
Seantier B. (ref16/cit16) 2005; 109
Wacklin H. P. (ref12/cit12) 2011; 27
Langmuir. 2014 Jul 1;30(25):7621
References_xml – volume: 23
  start-page: 7644
  year: 2007
  ident: ref13/cit13
  publication-title: Langmuir
  doi: 10.1021/la063476q
– volume: 131
  start-page: 14130
  year: 2009
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903375m
– volume: 74
  start-page: S329
  year: 2002
  ident: ref23/cit23
  publication-title: Appl. Phys. A: Mater. Sci. Process.
  doi: 10.1007/s003390201611
– volume: 19
  start-page: 1681
  year: 2003
  ident: ref26/cit26
  publication-title: Langmuir
  doi: 10.1021/la0263920
– volume: 85
  start-page: 3035
  year: 2003
  ident: ref5/cit5
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74722-5
– volume: 75
  start-page: 734
  year: 1998
  ident: ref28/cit28
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77563-0
– volume: 88
  start-page: 3422
  year: 2005
  ident: ref9/cit9
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.053728
– volume: 1508
  start-page: 34
  year: 2000
  ident: ref6/cit6
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(00)00006-X
– volume: 86
  start-page: 3783
  year: 2004
  ident: ref30/cit30
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036681
– volume: 3
  start-page: FA59
  year: 2008
  ident: ref17/cit17
  publication-title: Biointerphases
  doi: 10.1116/1.2896113
– volume: 5
  start-page: 1096
  year: 2010
  ident: ref21/cit21
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2010.65
– volume: 1768
  start-page: 90
  year: 2007
  ident: ref2/cit2
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2006.09.028
– volume: 1469
  start-page: 159
  year: 2000
  ident: ref27/cit27
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(00)00016-2
– volume: 21
  start-page: 2827
  year: 2005
  ident: ref24/cit24
  publication-title: Langmuir
  doi: 10.1021/la047389e
– volume: 39
  start-page: 273
  year: 2006
  ident: ref25/cit25
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806005073
– volume: 26
  start-page: 14600
  year: 2010
  ident: ref7/cit7
  publication-title: Langmuir
  doi: 10.1021/la102151p
– volume: 7
  start-page: 10662
  year: 2013
  ident: ref15/cit15
  publication-title: ACS Nano
  doi: 10.1021/nn403367c
– volume: 1758
  start-page: 693
  year: 2006
  ident: ref18/cit18
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2006.03.025
– volume: 14
  start-page: 719
  year: 2010
  ident: ref1/cit1
  publication-title: Biotechnol. Agron. Soc.
– volume: 42
  start-page: 47
  year: 2013
  ident: ref3/cit3
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-012-0796-6
– volume: 126
  start-page: 107
  year: 2011
  ident: ref22/cit22
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2011-11107-8
– volume: 47
  start-page: 102
  year: 2006
  ident: ref19/cit19
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2005.11.025
– volume: 27
  start-page: 7698
  year: 2011
  ident: ref12/cit12
  publication-title: Langmuir
  doi: 10.1021/la200683e
– volume: 57
  start-page: 1007
  year: 1935
  ident: ref8/cit8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01309a011
– volume: 109
  start-page: 21755
  year: 2005
  ident: ref16/cit16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp053482f
– volume: 4
  start-page: 5
  year: 2004
  ident: ref29/cit29
  publication-title: Nano Lett.
  doi: 10.1021/nl034590l
– volume: 22
  start-page: 3497
  year: 2006
  ident: ref10/cit10
  publication-title: Langmuir
  doi: 10.1021/la052687c
– volume: 8
  start-page: 5658
  year: 2012
  ident: ref11/cit11
  publication-title: Soft Matter
  doi: 10.1039/c2sm00013j
– volume: 8
  start-page: 396
  year: 2014
  ident: ref4/cit4
  publication-title: ACS Nano
  doi: 10.1021/nn404530z
– volume: 19
  start-page: 6922
  year: 2003
  ident: ref20/cit20
  publication-title: Langmuir
  doi: 10.1021/la034232y
– reference: - Langmuir. 2014 Jul 1;30(25):7621
SSID ssj0009349
Score 2.4258325
Snippet We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary...
SourceID swepub
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7259
SubjectTerms atomic force microscopy
cooling
Fysik
lipid bilayers
Lipid Bilayers - chemistry
lipids
melting point
Natural Sciences
Naturvetenskap
neutrons
phase transition
Physical Sciences
quartz crystal microbalance
Temperature
Title Formation of Supported Lipid Bilayers by Vesicle Fusion: Effect of Deposition Temperature
URI http://dx.doi.org/10.1021/la500897x
https://www.ncbi.nlm.nih.gov/pubmed/24932971
https://www.proquest.com/docview/1542650572
https://www.proquest.com/docview/2000565055
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-4792
https://lup.lub.lu.se/record/4602814
oai:portal.research.lu.se:publications/46002feb-e68a-4297-acc1-c62ba0a8ec8d
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoAL4ptQWBnogUsgdpzY4Va2XVVIcKGtChdr7Nii0rK76m4OXPjtzKyTpcBWcPDJ47E042jeZOw3jO0LHT1Oubw10uUqGpE7EULegFdNWWko1u2APnysj0_V-_PqfIe9vKaCL8WbKXH2m0YjULwhazxu1N3yx-tfzLplwrjEtalVXQ70QVeXUujxy99Dz1948g-y0HWAmdxht3tkyA-SK--ynTC7x26Oh4Zs99nnyfDQkM8jp3acdFG25dR-uuXvLqZA8Jm77_wsLEkHn3T0L-wtTxTFtOowDLe0-ElAxJwYlR-w08nRyfg47zsj5ID4ZZXX1FpGttIpCKWppI8R0yanTKVVKEALjDFl7UOsMOCHwuvWGyWcBqiN9tGUD9nubD4Ljxn3ghCCNhFiQ9kQSFAI6Upd6SI2BWRshKaz_cle2nXRWgq7sW3GXg1Wtb7nFaf2FtNtoi82ootEprFN6PngGosGpvoFzMK8w60rhBOUUMnrZejlUUVCVcYeJb9utsJMs5SNFhnbT47ezBDH9uHF2YHFg2e_QWeVbnCToy1i026Bw-Gwy2AVlTVjcDbUBizGdm3Be2F9LR0UYII3bca-bNGTsivbUzp97fUtrvyr_S_lT_7lnj12CzGeSjeMn7Ld1WUXniGOWrkR5hHjT6P11_QTx6Ubxw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENUw5VAufENdoAimBy4uli1bMreQNhOg7YW0U7hoJFkaOoQkU8cH-PXsWnZaShh60EmrlS2tRm-10ltCdpnwFqpMXMnUxNxLFhvmXFxqy8ssFzpp0wEdHRfjE_7xLD_raHLwLQx8RA2a6jaIf8kuwN5OkbpflgLw4m0AISla82D4-ZJgNwtQFyk3BS-ynkXoalPcgWz95w70F6y8xhna7jOjeyFhUfuF7fWS73vN0uzZX9fIG2_2C_fJ3Q5u0kGwjwfklps9JJvDPsvbI_Jl1L9epHNPMccn3r6tKOa0ruj786lGTE7NT3rqatRBRw0esL2jgfcYW-27_uoXnTiA4YGm-TE5GR1MhuO4S7cQawBFy7jAfDVplRquXSbz1HoPvpjhMhfcJVow2LiywjqfA4pwiRWVlZwZoXUhhfUye0I2ZvOZ2yLUMoQdQnrtS3SxdKo54MRM5CLxZaIjsgMDpLrlUqs2Ep4ytRqhiLzp50jZjqwcc2ZM14m-XokuAkPHOqFX_UQrGGAMiuiZmzfQdQ4YBb209N8y-JwpR6E8Ik-Dlay6Avc1S0vBIrIbzGZVg8Td--enAwV2oH7oRnFRQicHa8SmzQKKgaJqpzjGSr0zyhVSKwAMQmlrmbJFanSipbOyisjXNXqCy6Y6nqhvnb7FlQPgGynf_t_0vCSb48nRoTr8cPzpGbkDIJKHK8zPycbyonEvAKgtzU67Qn8DygE5yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkYAL4t1QKAb1wCUQO07scCvdRuW14tBWhYtlO7aotOyums2BC7-dmThZCiyCQ04ejyOPrfnGY39DyB6TwUGTTRvFbSqCYqll3qeVcaLKC2myvhzQh2l5dCLenhVnQ6CIb2HgJ1rQ1PZJfNzVyyYMDAPs5Qzp-1UlATNeBRiSYamG6fcXP0l28wh3kXZTijIfmYQud0Uv5NpfvdAf0PI33tDe19S3yM0BJNL9aNXb5Iqf3yHXD8babHfJp3p8c0gXgWJlTrwz21CsRN3Q1-czg0ia2m_01Leog9YdHou9opGtGHtN_Hhhix57AM-RXPkeOakPjw-O0qFIQmoAyqzSEqvM8IZbYXyuCu5CgAjKClVI4TMjGbibvHQ-FOD7feZk45RgVhpTKumCyu-Trfli7rcJdQzBglTBhAoDI8ONAHSXy0JmocpMQnZh6vSwyFvd56850-u5TcjzcVa1GyjGsdLFbJPos7XoMvJqbBJ6OppGwwRjKsPM_aKDoQtAFhhb8b_L4COkAoWKhDyIdl0PBUFnzivJErIXDb1uQbrtyfnpvoYFqL-aTgtZwSCHG8Rm3RI-C59uvRaY4Qzeal8qo8HNS22cY9qV3JrMKO9Uk5DPG_TEQEsP7E5fBn3LS8e2_6X84b_M84Rc-zip9fs303c75AYgPxHvHT8iW6uLzj8GdLWyu_2W-gGd6CGB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Supported+Lipid+Bilayers+by+Vesicle+Fusion%3A+Effect+of+Deposition+Temperature&rft.jtitle=Langmuir&rft.au=Lind%2C+Tania+Kjellerup&rft.au=C%C3%A1rdenas%2C+Marit%C3%A9&rft.au=Wacklin%2C+Hanna+Pauliina&rft.date=2014-07-01&rft.issn=1520-5827&rft.volume=30&rft.issue=25+p.7259-7263&rft.spage=7259&rft.epage=7263&rft_id=info:doi/10.1021%2Fla500897x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon