Formation of Supported Lipid Bilayers by Vesicle Fusion: Effect of Deposition Temperature
We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phas...
Saved in:
Published in | Langmuir Vol. 30; no. 25; pp. 7259 - 7263 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (T m) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above T m by neutron reflection and investigated the effect of subsequent cooling to below the T m. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid T m. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. |
---|---|
AbstractList | We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (T-m) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above T-m by neutron reflection and investigated the effect of subsequent cooling to below the T-m. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid T-m. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported.We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tm) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tm by neutron reflection and investigated the effect of subsequent cooling to below the Tm. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tm. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary surface-sensitive techniques, we demonstrate that despite contradicting literature on the subject, high-quality bilayers can be formed below the main phase-transition temperature of the lipid. We have carefully studied the formation mechanism of supported DPPC bilayers below and above the lipid melting temperature (Tₘ) by quartz crystal microbalance and atomic force microscopy under continuous flow conditions. We also measured the structure of lipid bilayers formed below or above Tₘ by neutron reflection and investigated the effect of subsequent cooling to below the Tₘ. Our results clearly show that a continuous supported bilayer can be formed with high surface coverage below the lipid Tₘ. We also demonstrate that the high dissipation responses observed during the deposition process by QCM-D correspond to vesicles absorbed on top of a continuous bilayer and not to a surface-supported vesicular layer as previously reported. |
Author | Cárdenas, Marité Lind, Tania Kjellerup Wacklin, Hanna Pauliina |
AuthorAffiliation | Malmoe University Nano-Science Center and Institute of Chemistry Health & Society Copenhagen University |
AuthorAffiliation_xml | – name: Health & Society – name: Malmoe University – name: Copenhagen University – name: Nano-Science Center and Institute of Chemistry |
Author_xml | – sequence: 1 givenname: Tania Kjellerup surname: Lind fullname: Lind, Tania Kjellerup email: tania@nano.ku.dk – sequence: 2 givenname: Marité surname: Cárdenas fullname: Cárdenas, Marité email: marite.cardenas@mah.se, cardenas@nano.ku.dk – sequence: 3 givenname: Hanna Pauliina surname: Wacklin fullname: Wacklin, Hanna Pauliina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24932971$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-4792$$DView record from Swedish Publication Index https://lup.lub.lu.se/record/4602814$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/46002feb-e68a-4297-acc1-c62ba0a8ec8d$$DView record from Swedish Publication Index |
BookMark | eNqNkk1v1DAQhi1URLeFA38A5YIEQkttx45tbqXtAtJKHCiVOFkTZwKuknVqx4L992Q_2ANqBQfLl2ee8YzfE3K0Cisk5Dmjbxnl7KwDSak26tcjMmOS07nUXB2RGVWinCtRlcfkJKVbSqkphXlCjrkwJTeKzci3RYg9jD6sitAWX_IwhDhiUyz94Jvive9gjTEV9bq4weRdh8Uip4l-V1y1LbpxU3WJQ0h-67jGfsAIY474lDxuoUv4bH-fkq-Lq-uLj_Pl5w-fLs6Xc6iEGOeV4lTwhtcCsNSSu7Y1RtdCSyWQgmLG0LJy2ErNDFKnGqcFqxVApZVrdXlKYOdNP3HItR2i7yGubQBvN8NAZyMmhOh-2C7bhHaiOu-2QycrKkp5i7XFSoMV01YsOMesq3gNFDQ63Uw9lg_26PIwnXrv_k_dmwd1l_7m3Ib43faQrVCGT_SrHT3EcJcxjbb3yWHXwQpDTpZP_yorSaX8J8qk4BtSbawv9miue2wOb_gTjQl4vQNcDClFbA8Io3YTO3uI3cSe_cU6P24XPEbw3b0VL3cV4JK9DTmupozcw_0Gm4PnEg |
CitedBy_id | crossref_primary_10_3390_coatings10100981 crossref_primary_10_1021_acs_analchem_9b04125 crossref_primary_10_1016_j_jcis_2017_03_018 crossref_primary_10_3390_bios13020189 crossref_primary_10_3390_membranes14040079 crossref_primary_10_1016_j_bbamem_2014_10_019 crossref_primary_10_1016_j_jcis_2024_10_112 crossref_primary_10_1021_acs_langmuir_7b03212 crossref_primary_10_3390_nano14181489 crossref_primary_10_1021_acs_jpcb_1c04615 crossref_primary_10_1039_C6CP06258J crossref_primary_10_1116_1_4963188 crossref_primary_10_1021_acs_langmuir_3c02160 crossref_primary_10_1002_adfm_202315166 crossref_primary_10_1088_1361_6528_aa5d77 crossref_primary_10_1021_acs_jpcb_6b05433 crossref_primary_10_1063_1_4968215 crossref_primary_10_1021_acs_langmuir_0c02516 crossref_primary_10_1021_acsami_3c03526 crossref_primary_10_1039_C9SM01066A crossref_primary_10_1016_j_apmt_2021_101183 crossref_primary_10_1021_acs_langmuir_4c04405 crossref_primary_10_2116_analsci_20P068 crossref_primary_10_3390_membranes14100215 crossref_primary_10_1252_kakoronbunshu_48_175 crossref_primary_10_3390_molecules20010738 crossref_primary_10_1016_j_colsurfb_2021_112161 crossref_primary_10_1021_acs_langmuir_7b02764 crossref_primary_10_1116_6_0003312 crossref_primary_10_1021_acs_jpcc_8b06566 crossref_primary_10_5650_oleoscience_19_13 crossref_primary_10_1016_j_colsurfb_2016_02_040 crossref_primary_10_3389_frsfm_2023_1339496 crossref_primary_10_1016_j_jcis_2023_04_137 crossref_primary_10_1021_acsomega_9b01075 crossref_primary_10_1002_admi_201901787 crossref_primary_10_1016_j_jcis_2019_11_102 crossref_primary_10_1002_adfm_201704356 crossref_primary_10_1016_j_jcis_2024_05_066 crossref_primary_10_1021_acs_jpcb_7b00500 crossref_primary_10_1021_acs_langmuir_0c01810 crossref_primary_10_1021_acs_langmuir_1c01707 crossref_primary_10_3390_bios14060270 crossref_primary_10_1016_j_bbamem_2015_05_015 crossref_primary_10_1016_j_jcis_2024_03_055 crossref_primary_10_1021_acs_langmuir_5b03605 crossref_primary_10_1021_acsabm_0c01180 crossref_primary_10_1021_acsami_9b09988 crossref_primary_10_1002_macp_202200237 crossref_primary_10_3390_membranes12100906 crossref_primary_10_1021_acs_langmuir_7b02459 crossref_primary_10_1021_acs_jpcb_4c05451 crossref_primary_10_1016_j_jcis_2023_10_082 crossref_primary_10_3390_chemistry6050074 crossref_primary_10_1016_j_molliq_2020_114492 crossref_primary_10_1116_6_0001029 crossref_primary_10_1016_j_ijbiomac_2018_03_078 crossref_primary_10_3390_membranes13030320 crossref_primary_10_1039_D1RA01920A crossref_primary_10_1007_s10853_023_08394_7 crossref_primary_10_1016_j_colsurfa_2023_131125 crossref_primary_10_1039_C9CP02085C crossref_primary_10_1021_acs_langmuir_8b03597 crossref_primary_10_1021_acs_analchem_2c02833 crossref_primary_10_1002_pro_4987 crossref_primary_10_1038_s41598_019_49210_0 crossref_primary_10_3389_fchem_2019_00343 crossref_primary_10_3390_mi14020372 crossref_primary_10_1021_acs_jpcb_7b08359 crossref_primary_10_1002_adfm_202414534 crossref_primary_10_1016_j_bpj_2017_05_049 crossref_primary_10_1371_journal_pone_0144671 crossref_primary_10_1116_1_4944830 crossref_primary_10_1021_acs_nanolett_6b04493 crossref_primary_10_1016_j_cis_2020_102118 crossref_primary_10_1021_la504267g crossref_primary_10_1021_acs_langmuir_8b03504 crossref_primary_10_1021_acs_langmuir_9b03897 crossref_primary_10_1007_s00249_015_1068_z |
Cites_doi | 10.1021/la063476q 10.1021/ja903375m 10.1007/s003390201611 10.1021/la0263920 10.1016/S0006-3495(03)74722-5 10.1016/S0006-3495(98)77563-0 10.1529/biophysj.104.053728 10.1016/S0304-4157(00)00006-X 10.1529/biophysj.103.036681 10.1116/1.2896113 10.1038/nprot.2010.65 10.1016/j.bbamem.2006.09.028 10.1016/S0304-4157(00)00016-2 10.1021/la047389e 10.1107/S0021889806005073 10.1021/la102151p 10.1021/nn403367c 10.1016/j.bbamem.2006.03.025 10.1007/s00249-012-0796-6 10.1140/epjp/i2011-11107-8 10.1016/j.colsurfb.2005.11.025 10.1021/la200683e 10.1021/ja01309a011 10.1021/jp053482f 10.1021/nl034590l 10.1021/la052687c 10.1039/c2sm00013j 10.1021/nn404530z 10.1021/la034232y |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society |
DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTPV AOWAS D8T ZZAVC AGCHP D95 |
DOI | 10.1021/la500897x |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text SWEPUB Lunds universitet full text SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 7263 |
ExternalDocumentID | oai_portal_research_lu_se_publications_46002feb_e68a_4297_acc1_c62ba0a8ec8d oai_lup_lub_lu_se_46002feb_e68a_4297_acc1_c62ba0a8ec8d oai_DiVA_org_mau_4792 24932971 10_1021_la500897x c436404796 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 N~. RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 .HR 186 1WB 6TJ ABHMW ACRPL ADNMO ADTPV AEYZD AFFNX AGQPQ ANPPW ANTXH AOWAS D8T ZZAVC AGCHP D95 |
ID | FETCH-LOGICAL-a644t-672042d2b4ae3852cff998b48574e0a7199036cef5819e0c7dc841b7aa687cf83 |
IEDL.DBID | N~. |
ISSN | 0743-7463 1520-5827 |
IngestDate | Wed Aug 27 04:08:33 EDT 2025 Thu Jul 03 05:23:47 EDT 2025 Thu Aug 21 06:27:46 EDT 2025 Fri Jul 11 15:21:49 EDT 2025 Fri Jul 11 04:19:17 EDT 2025 Thu Jan 02 22:14:46 EST 2025 Tue Jul 01 02:30:28 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Thu Aug 27 13:43:11 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a644t-672042d2b4ae3852cff998b48574e0a7199036cef5819e0c7dc841b7aa687cf83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1021/la500897x |
PMID | 24932971 |
PQID | 1542650572 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_46002feb_e68a_4297_acc1_c62ba0a8ec8d swepub_primary_oai_lup_lub_lu_se_46002feb_e68a_4297_acc1_c62ba0a8ec8d swepub_primary_oai_DiVA_org_mau_4792 proquest_miscellaneous_2000565055 proquest_miscellaneous_1542650572 pubmed_primary_24932971 crossref_primary_10_1021_la500897x crossref_citationtrail_10_1021_la500897x acs_journals_10_1021_la500897x |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Ollivon M. (ref6/cit6) 2000; 1508 Nelson A. (ref25/cit25) 2006; 39 Kataoka-Hamai C. (ref7/cit7) 2010; 26 Fernandez D. I. (ref3/cit3) 2013; 42 Vacklin H. P. (ref24/cit24) 2005; 21 Nagle J. F. (ref27/cit27) 2000; 1469 Seantier B. (ref29/cit29) 2004; 4 Armen R. S. (ref28/cit28) 1998; 75 Eeman M. (ref1/cit1) 2010; 14 Bernchou U. (ref14/cit14) 2009; 131 Blodgett K. B. (ref8/cit8) 1935; 57 Campbell R. A. (ref22/cit22) 2011; 126 Dodd C. E. (ref17/cit17) 2008; 3 Tian C. (ref18/cit18) 2006; 1758 Richter R. P. (ref9/cit9) 2005; 88 Richter R. P. (ref10/cit10) 2006; 22 Cubitt R. (ref23/cit23) 2002; 74 Richter R. (ref5/cit5) 2003; 85 Wacklin H. P. (ref13/cit13) 2007; 23 Domenech O. (ref19/cit19) 2006; 47 Andrecka J. (ref15/cit15) 2013; 7 Lind T. K. (ref4/cit4) 2014; 8 Reimhult E. (ref26/cit26) 2003; 19 Åkesson A. (ref11/cit11) 2012; 8 Balashev K. (ref2/cit2) 2007; 1768 Merino S. (ref20/cit20) 2003; 19 Cho N.-J. (ref21/cit21) 2010; 5 Leonenko Z. V. (ref30/cit30) 2004; 86 Seantier B. (ref16/cit16) 2005; 109 Wacklin H. P. (ref12/cit12) 2011; 27 Langmuir. 2014 Jul 1;30(25):7621 |
References_xml | – volume: 23 start-page: 7644 year: 2007 ident: ref13/cit13 publication-title: Langmuir doi: 10.1021/la063476q – volume: 131 start-page: 14130 year: 2009 ident: ref14/cit14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903375m – volume: 74 start-page: S329 year: 2002 ident: ref23/cit23 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s003390201611 – volume: 19 start-page: 1681 year: 2003 ident: ref26/cit26 publication-title: Langmuir doi: 10.1021/la0263920 – volume: 85 start-page: 3035 year: 2003 ident: ref5/cit5 publication-title: Biophys. J. doi: 10.1016/S0006-3495(03)74722-5 – volume: 75 start-page: 734 year: 1998 ident: ref28/cit28 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77563-0 – volume: 88 start-page: 3422 year: 2005 ident: ref9/cit9 publication-title: Biophys. J. doi: 10.1529/biophysj.104.053728 – volume: 1508 start-page: 34 year: 2000 ident: ref6/cit6 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(00)00006-X – volume: 86 start-page: 3783 year: 2004 ident: ref30/cit30 publication-title: Biophys. J. doi: 10.1529/biophysj.103.036681 – volume: 3 start-page: FA59 year: 2008 ident: ref17/cit17 publication-title: Biointerphases doi: 10.1116/1.2896113 – volume: 5 start-page: 1096 year: 2010 ident: ref21/cit21 publication-title: Nat. Protoc doi: 10.1038/nprot.2010.65 – volume: 1768 start-page: 90 year: 2007 ident: ref2/cit2 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2006.09.028 – volume: 1469 start-page: 159 year: 2000 ident: ref27/cit27 publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(00)00016-2 – volume: 21 start-page: 2827 year: 2005 ident: ref24/cit24 publication-title: Langmuir doi: 10.1021/la047389e – volume: 39 start-page: 273 year: 2006 ident: ref25/cit25 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806005073 – volume: 26 start-page: 14600 year: 2010 ident: ref7/cit7 publication-title: Langmuir doi: 10.1021/la102151p – volume: 7 start-page: 10662 year: 2013 ident: ref15/cit15 publication-title: ACS Nano doi: 10.1021/nn403367c – volume: 1758 start-page: 693 year: 2006 ident: ref18/cit18 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2006.03.025 – volume: 14 start-page: 719 year: 2010 ident: ref1/cit1 publication-title: Biotechnol. Agron. Soc. – volume: 42 start-page: 47 year: 2013 ident: ref3/cit3 publication-title: Eur. Biophys. J. doi: 10.1007/s00249-012-0796-6 – volume: 126 start-page: 107 year: 2011 ident: ref22/cit22 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2011-11107-8 – volume: 47 start-page: 102 year: 2006 ident: ref19/cit19 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2005.11.025 – volume: 27 start-page: 7698 year: 2011 ident: ref12/cit12 publication-title: Langmuir doi: 10.1021/la200683e – volume: 57 start-page: 1007 year: 1935 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01309a011 – volume: 109 start-page: 21755 year: 2005 ident: ref16/cit16 publication-title: J. Phys. Chem. B doi: 10.1021/jp053482f – volume: 4 start-page: 5 year: 2004 ident: ref29/cit29 publication-title: Nano Lett. doi: 10.1021/nl034590l – volume: 22 start-page: 3497 year: 2006 ident: ref10/cit10 publication-title: Langmuir doi: 10.1021/la052687c – volume: 8 start-page: 5658 year: 2012 ident: ref11/cit11 publication-title: Soft Matter doi: 10.1039/c2sm00013j – volume: 8 start-page: 396 year: 2014 ident: ref4/cit4 publication-title: ACS Nano doi: 10.1021/nn404530z – volume: 19 start-page: 6922 year: 2003 ident: ref20/cit20 publication-title: Langmuir doi: 10.1021/la034232y – reference: - Langmuir. 2014 Jul 1;30(25):7621 |
SSID | ssj0009349 |
Score | 2.4258325 |
Snippet | We have investigated the effect of deposition temperature on supported lipid bilayer formation via vesicle fusion. By using several complementary... |
SourceID | swepub proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7259 |
SubjectTerms | atomic force microscopy cooling Fysik lipid bilayers Lipid Bilayers - chemistry lipids melting point Natural Sciences Naturvetenskap neutrons phase transition Physical Sciences quartz crystal microbalance Temperature |
Title | Formation of Supported Lipid Bilayers by Vesicle Fusion: Effect of Deposition Temperature |
URI | http://dx.doi.org/10.1021/la500897x https://www.ncbi.nlm.nih.gov/pubmed/24932971 https://www.proquest.com/docview/1542650572 https://www.proquest.com/docview/2000565055 https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-4792 https://lup.lub.lu.se/record/4602814 oai:portal.research.lu.se:publications/46002feb-e68a-4297-acc1-c62ba0a8ec8d |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcoAL4ptQWBnogUsgdpzY4Va2XVVIcKGtChdr7Nii0rK76m4OXPjtzKyTpcBWcPDJ47E042jeZOw3jO0LHT1Oubw10uUqGpE7EULegFdNWWko1u2APnysj0_V-_PqfIe9vKaCL8WbKXH2m0YjULwhazxu1N3yx-tfzLplwrjEtalVXQ70QVeXUujxy99Dz1948g-y0HWAmdxht3tkyA-SK--ynTC7x26Oh4Zs99nnyfDQkM8jp3acdFG25dR-uuXvLqZA8Jm77_wsLEkHn3T0L-wtTxTFtOowDLe0-ElAxJwYlR-w08nRyfg47zsj5ID4ZZXX1FpGttIpCKWppI8R0yanTKVVKEALjDFl7UOsMOCHwuvWGyWcBqiN9tGUD9nubD4Ljxn3ghCCNhFiQ9kQSFAI6Upd6SI2BWRshKaz_cle2nXRWgq7sW3GXg1Wtb7nFaf2FtNtoi82ootEprFN6PngGosGpvoFzMK8w60rhBOUUMnrZejlUUVCVcYeJb9utsJMs5SNFhnbT47ezBDH9uHF2YHFg2e_QWeVbnCToy1i026Bw-Gwy2AVlTVjcDbUBizGdm3Be2F9LR0UYII3bca-bNGTsivbUzp97fUtrvyr_S_lT_7lnj12CzGeSjeMn7Ld1WUXniGOWrkR5hHjT6P11_QTx6Ubxw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENUw5VAufENdoAimBy4uli1bMreQNhOg7YW0U7hoJFkaOoQkU8cH-PXsWnZaShh60EmrlS2tRm-10ltCdpnwFqpMXMnUxNxLFhvmXFxqy8ssFzpp0wEdHRfjE_7xLD_raHLwLQx8RA2a6jaIf8kuwN5OkbpflgLw4m0AISla82D4-ZJgNwtQFyk3BS-ynkXoalPcgWz95w70F6y8xhna7jOjeyFhUfuF7fWS73vN0uzZX9fIG2_2C_fJ3Q5u0kGwjwfklps9JJvDPsvbI_Jl1L9epHNPMccn3r6tKOa0ruj786lGTE7NT3rqatRBRw0esL2jgfcYW-27_uoXnTiA4YGm-TE5GR1MhuO4S7cQawBFy7jAfDVplRquXSbz1HoPvpjhMhfcJVow2LiywjqfA4pwiRWVlZwZoXUhhfUye0I2ZvOZ2yLUMoQdQnrtS3SxdKo54MRM5CLxZaIjsgMDpLrlUqs2Ep4ytRqhiLzp50jZjqwcc2ZM14m-XokuAkPHOqFX_UQrGGAMiuiZmzfQdQ4YBb209N8y-JwpR6E8Ik-Dlay6Avc1S0vBIrIbzGZVg8Td--enAwV2oH7oRnFRQicHa8SmzQKKgaJqpzjGSr0zyhVSKwAMQmlrmbJFanSipbOyisjXNXqCy6Y6nqhvnb7FlQPgGynf_t_0vCSb48nRoTr8cPzpGbkDIJKHK8zPycbyonEvAKgtzU67Qn8DygE5yw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQkYAL4t1QKAb1wCUQO07scCvdRuW14tBWhYtlO7aotOyums2BC7-dmThZCiyCQ04ejyOPrfnGY39DyB6TwUGTTRvFbSqCYqll3qeVcaLKC2myvhzQh2l5dCLenhVnQ6CIb2HgJ1rQ1PZJfNzVyyYMDAPs5Qzp-1UlATNeBRiSYamG6fcXP0l28wh3kXZTijIfmYQud0Uv5NpfvdAf0PI33tDe19S3yM0BJNL9aNXb5Iqf3yHXD8babHfJp3p8c0gXgWJlTrwz21CsRN3Q1-czg0ia2m_01Leog9YdHou9opGtGHtN_Hhhix57AM-RXPkeOakPjw-O0qFIQmoAyqzSEqvM8IZbYXyuCu5CgAjKClVI4TMjGbibvHQ-FOD7feZk45RgVhpTKumCyu-Trfli7rcJdQzBglTBhAoDI8ONAHSXy0JmocpMQnZh6vSwyFvd56850-u5TcjzcVa1GyjGsdLFbJPos7XoMvJqbBJ6OppGwwRjKsPM_aKDoQtAFhhb8b_L4COkAoWKhDyIdl0PBUFnzivJErIXDb1uQbrtyfnpvoYFqL-aTgtZwSCHG8Rm3RI-C59uvRaY4Qzeal8qo8HNS22cY9qV3JrMKO9Uk5DPG_TEQEsP7E5fBn3LS8e2_6X84b_M84Rc-zip9fs303c75AYgPxHvHT8iW6uLzj8GdLWyu_2W-gGd6CGB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Supported+Lipid+Bilayers+by+Vesicle+Fusion%3A+Effect+of+Deposition+Temperature&rft.jtitle=Langmuir&rft.au=Lind%2C+Tania+Kjellerup&rft.au=C%C3%A1rdenas%2C+Marit%C3%A9&rft.au=Wacklin%2C+Hanna+Pauliina&rft.date=2014-07-01&rft.issn=1520-5827&rft.volume=30&rft.issue=25+p.7259-7263&rft.spage=7259&rft.epage=7263&rft_id=info:doi/10.1021%2Fla500897x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |