Leaching of Heavy Metals from Contaminated Soils: An Experimental and Modeling Study
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling....
Saved in:
Published in | Environmental science & technology Vol. 38; no. 16; pp. 4390 - 4395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.08.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in “V-shaped” leaching curves with orders of magnitude changes in solution concentrations. The “multisurface” model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The “multisurface” modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. |
---|---|
AbstractList | In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pl-l-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. [PUBLICATION ABSTRACT] In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. The leaching behavior of nickel, copper, zinc, cadmium, and lead from eight different contaminated soils was studied over a wide range of pH values using an original experimental approach based on batch pHstatic leaching experiments in combination with selective chemical extractions. The resulting data were used to obtain geochemical fingerprints of the studied soils, and a computer speciation model was applied to identify for each element the processes most likely to control leaching. Results revealed that the leached concentrations of the heavy metals were generally much lower than the total concentrations, but they showed a strong pH dependence. Concentrations dropped over two orders of magnitude between pH 2 and neutral pH and then increased from neutral pH toward strongly alkaline pH values. Model predictions of heavy-metal leaching were excellent for Ni, Cu, and Cd. Organic matter was the predominant reactive surface in the solid phase, especially for Cu, Ni, and Cd, over almost the entire pH range, while iron and aluminum oxides contributed significantly to the overall adsorption of all metals investigated around pH 8. In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me super(2+)) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in “V-shaped” leaching curves with orders of magnitude changes in solution concentrations. The “multisurface” model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The “multisurface” modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. |
Author | Meeussen, Johannes C. L Dijkstra, Joris J Comans, Rob N. J |
Author_xml | – sequence: 1 givenname: Joris J surname: Dijkstra fullname: Dijkstra, Joris J – sequence: 2 givenname: Johannes C. L surname: Meeussen fullname: Meeussen, Johannes C. L – sequence: 3 givenname: Rob N. J surname: Comans fullname: Comans, Rob N. J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16025403$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15382869$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhi1URC-w4AXQCAkQi6G-jD2e7kpUCCgBpESCnXVie4rLxBPsmbbZseU1eRI8SkilgujqLM73_-d6iPZ86y1Cjwl-RTAlxzbiopKSX95DB4RTnHPJyR46wJiwvGLiyz46jPECY0wZlg_QPuFMUimqA_R5YkF_df48a-tsbOFynU1tB03M6tAus1HrO1g6D5012ax1TTz59eNnduqzs-uVDW5pU77JwJts2hrbDEazrjfrh-h-nVzso208QvM3Z_PROJ98fPtudDrJQRS4y8FozoVhBjjXjIIwpZCc1lVtjJGa1YUu02RGM8uIkAVgnBK1lUJgrSt2hE42tldwbn2qbr3yELSLqgWnGrcIENbqqg_KN0NY9YuoWIElEUn8YiNehfZ7b2Onli5q2zTgbdtHVfKixCUnNJHP_0sKIStJKb4TJIJIjCt-N5hKi43j01vgRdsHn3aq0jEJo7wc-nuyhfrF0hq1SpcZ5v5z5wQ82wIQNTR1AD_saMcJTHmBWeKON5wObYzB1kq7DjqX3iCAaxTBavg4tfu4pHh5S7Ez_Qebb1gXO3u9AyF8U6JkJVfzTzMlp2P2YfJ6rN7fdA063oz9t-9v8ArxWw |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_2134_jeq2011_0115 crossref_primary_10_1016_j_envpol_2009_03_021 crossref_primary_10_1111_ejss_13575 crossref_primary_10_1080_09593330_2021_1936202 crossref_primary_10_1016_j_wasman_2006_01_020 crossref_primary_10_1557_PROC_932_50_1 crossref_primary_10_1016_j_chemosphere_2007_08_073 crossref_primary_10_3390_min10100846 crossref_primary_10_1016_j_scitotenv_2023_164512 crossref_primary_10_1089_ees_2006_0234 crossref_primary_10_1016_j_jhazmat_2011_03_119 crossref_primary_10_1071_EN23075 crossref_primary_10_1007_s11104_012_1426_x crossref_primary_10_1016_j_ecoenv_2018_01_035 crossref_primary_10_1007_s11356_021_14320_8 crossref_primary_10_1007_s11356_017_9139_6 crossref_primary_10_1016_j_apgeochem_2016_07_006 crossref_primary_10_1007_s11368_010_0290_7 crossref_primary_10_1016_j_scitotenv_2023_167220 crossref_primary_10_1007_s10653_012_9449_z crossref_primary_10_1016_j_jhazmat_2011_05_089 crossref_primary_10_1021_es900555g crossref_primary_10_1021_es0505806 crossref_primary_10_1016_j_envpol_2018_06_004 crossref_primary_10_1016_j_jhazmat_2007_01_102 crossref_primary_10_1016_j_watres_2024_122336 crossref_primary_10_1016_j_envpol_2012_07_045 crossref_primary_10_1016_j_apgeochem_2018_07_012 crossref_primary_10_1007_s12665_012_1853_2 crossref_primary_10_1007_s11356_016_6456_0 crossref_primary_10_1016_j_scitotenv_2023_163647 crossref_primary_10_1016_j_wasman_2018_02_002 crossref_primary_10_1016_j_jhazmat_2016_02_025 crossref_primary_10_1021_es3027264 crossref_primary_10_2136_sssaj2010_0146 crossref_primary_10_1016_j_chemosphere_2007_07_013 crossref_primary_10_1111_ejss_12226 crossref_primary_10_1016_j_jhazmat_2008_01_058 crossref_primary_10_1016_j_gexplo_2008_05_003 crossref_primary_10_1007_s12649_013_9219_x crossref_primary_10_1016_j_scitotenv_2024_177769 crossref_primary_10_2136_vzj2012_0152 crossref_primary_10_1016_j_geoderma_2015_11_021 crossref_primary_10_1016_j_apgeochem_2008_02_025 crossref_primary_10_1016_j_scitotenv_2017_08_248 crossref_primary_10_1016_j_pce_2022_103153 crossref_primary_10_1021_acs_est_4c04812 crossref_primary_10_1016_j_apgeochem_2012_11_003 crossref_primary_10_1080_09593330_2012_670270 crossref_primary_10_1371_journal_pone_0229794 crossref_primary_10_1016_j_jhazmat_2009_04_097 crossref_primary_10_1016_j_jhazmat_2014_05_102 crossref_primary_10_1016_j_envpol_2011_08_006 crossref_primary_10_1007_s41742_020_00293_y crossref_primary_10_1016_j_jhazmat_2018_07_075 crossref_primary_10_1016_j_sciaf_2024_e02117 crossref_primary_10_1016_j_jhydrol_2010_05_024 crossref_primary_10_1515_jbcpp_2021_0173 crossref_primary_10_1007_s11783_010_0245_7 crossref_primary_10_1016_j_chemosphere_2019_124932 crossref_primary_10_3390_su13168805 crossref_primary_10_1016_j_chemosphere_2017_09_088 crossref_primary_10_1111_j_1365_2389_2009_01139_x crossref_primary_10_1007_s10653_011_9385_3 crossref_primary_10_1097_SS_0000000000000218 crossref_primary_10_1016_j_scitotenv_2023_166100 crossref_primary_10_1016_j_wasman_2016_07_036 crossref_primary_10_1016_j_scitotenv_2022_159119 crossref_primary_10_1016_j_jhazmat_2010_03_087 crossref_primary_10_1016_j_wasman_2016_07_038 crossref_primary_10_1016_j_envpol_2020_115573 crossref_primary_10_1016_j_gca_2009_10_018 crossref_primary_10_1016_j_gexplo_2005_08_092 crossref_primary_10_1016_j_envpol_2011_05_002 crossref_primary_10_3390_agronomy14071520 crossref_primary_10_1007_s11270_015_2426_2 crossref_primary_10_1021_es048154s crossref_primary_10_1897_04_621R_1 crossref_primary_10_1016_j_aca_2008_10_066 crossref_primary_10_1016_j_chemosphere_2020_127673 crossref_primary_10_1080_15320383_2013_770445 crossref_primary_10_3390_cryst11070719 crossref_primary_10_1007_s11270_007_9357_5 crossref_primary_10_1016_j_apgeochem_2018_01_014 crossref_primary_10_1007_s13762_014_0671_3 crossref_primary_10_1016_j_marpolbul_2023_115062 crossref_primary_10_1016_j_enggeo_2011_09_004 crossref_primary_10_1016_j_chemosphere_2020_126212 crossref_primary_10_1016_j_scitotenv_2024_172588 crossref_primary_10_1007_s10653_015_9695_y crossref_primary_10_1016_j_scitotenv_2009_03_014 crossref_primary_10_1016_j_scitotenv_2016_06_001 crossref_primary_10_1016_j_chemgeo_2019_02_038 crossref_primary_10_1080_15569543_2020_1815787 crossref_primary_10_1080_15320383_2011_620047 crossref_primary_10_1021_acssuschemeng_3c03148 crossref_primary_10_2136_sssaj2018_03_0104 crossref_primary_10_1021_acs_est_9b04104 crossref_primary_10_2136_sssaj2006_0118 crossref_primary_10_1016_j_geoderma_2008_11_040 crossref_primary_10_1016_j_ecoenv_2024_116458 crossref_primary_10_1007_s11104_014_2128_3 crossref_primary_10_1071_EN11025 crossref_primary_10_5194_bg_13_1519_2016 crossref_primary_10_1016_j_apgeochem_2016_02_009 crossref_primary_10_1007_s11270_007_9410_4 crossref_primary_10_1016_j_jhazmat_2012_11_058 crossref_primary_10_1007_s11368_015_1226_z crossref_primary_10_1016_j_chemgeo_2018_12_030 crossref_primary_10_1080_03650340_2016_1147647 crossref_primary_10_2134_jeq2005_0312 crossref_primary_10_1007_s11270_009_0061_5 crossref_primary_10_1007_s12517_018_4021_5 crossref_primary_10_1021_es500257e crossref_primary_10_3390_environments5060069 crossref_primary_10_1016_j_jhazmat_2023_132707 crossref_primary_10_1007_s11104_020_04651_9 crossref_primary_10_1016_j_jclepro_2020_123337 crossref_primary_10_1016_j_jhazmat_2016_01_005 crossref_primary_10_1016_j_scitotenv_2021_150332 crossref_primary_10_1111_j_1365_2389_2007_00894_x crossref_primary_10_1016_j_chemosphere_2007_03_001 crossref_primary_10_1016_j_jhazmat_2021_125710 crossref_primary_10_1016_j_envpol_2017_03_051 crossref_primary_10_1080_00207233_2014_983331 crossref_primary_10_1016_j_jes_2023_09_034 crossref_primary_10_1016_j_envpol_2012_07_029 crossref_primary_10_1021_es3037324 crossref_primary_10_2136_sssaj2010_0006 crossref_primary_10_1007_s11368_023_03518_7 crossref_primary_10_1016_j_geoderma_2021_115517 crossref_primary_10_1016_j_apgeochem_2007_12_032 crossref_primary_10_1016_j_jhazmat_2013_05_017 crossref_primary_10_1021_es051916e crossref_primary_10_1007_s00244_015_0133_z crossref_primary_10_1016_j_scitotenv_2020_139921 crossref_primary_10_1016_j_watres_2019_05_064 crossref_primary_10_1016_j_jenvman_2019_01_096 crossref_primary_10_3390_ijerph20032014 crossref_primary_10_1089_ees_2009_0322 crossref_primary_10_1016_j_sciaf_2024_e02426 crossref_primary_10_1016_j_jenvman_2022_117035 crossref_primary_10_1016_j_wasman_2014_12_018 crossref_primary_10_1111_ejss_13297 crossref_primary_10_1061__ASCE_EE_1943_7870_0000721 crossref_primary_10_1016_j_geoderma_2016_06_010 crossref_primary_10_1016_j_jenvrad_2021_106778 crossref_primary_10_1002_etc_2642 crossref_primary_10_1016_j_jhazmat_2006_05_106 crossref_primary_10_3389_fenvs_2022_1017809 crossref_primary_10_4491_KSEE_2018_40_6_227 crossref_primary_10_1007_s11270_008_9622_2 crossref_primary_10_1016_j_jclepro_2022_131569 crossref_primary_10_1016_j_biortech_2008_11_009 crossref_primary_10_1016_j_chemosphere_2020_126937 crossref_primary_10_3390_w15203690 crossref_primary_10_1016_j_scitotenv_2008_12_032 crossref_primary_10_1007_s13762_020_02694_0 crossref_primary_10_1016_j_envint_2006_09_017 crossref_primary_10_1080_15226514_2011_628714 crossref_primary_10_1016_j_chemosphere_2015_10_109 crossref_primary_10_1016_j_apgeochem_2024_106063 crossref_primary_10_1007_s10653_021_01010_0 crossref_primary_10_1007_s10661_015_4271_6 crossref_primary_10_1021_es0709223 crossref_primary_10_1016_j_chemosphere_2010_09_042 crossref_primary_10_1007_s10653_021_01071_1 crossref_primary_10_1016_j_jes_2016_05_032 crossref_primary_10_1007_s10661_017_5925_3 crossref_primary_10_1016_j_wasman_2010_08_017 crossref_primary_10_1134_S2070205120010268 crossref_primary_10_1007_s11368_023_03468_0 crossref_primary_10_1016_j_chemosphere_2007_09_046 crossref_primary_10_1016_j_wasman_2018_08_053 crossref_primary_10_2134_jeq2012_0116 crossref_primary_10_1088_1755_1315_191_1_012010 crossref_primary_10_1021_es400526q crossref_primary_10_1371_journal_pone_0133920 crossref_primary_10_1016_j_mineng_2012_11_010 crossref_primary_10_1016_j_gca_2017_06_014 crossref_primary_10_1080_02757540_2010_494159 crossref_primary_10_1089_ees_2007_0226 crossref_primary_10_1016_j_ecoenv_2019_03_106 crossref_primary_10_1016_j_scitotenv_2015_03_021 crossref_primary_10_1144_qjegh2012_025 crossref_primary_10_1016_j_jhazmat_2019_121502 crossref_primary_10_3985_jjsmcwm_20_24 crossref_primary_10_1016_j_jhazmat_2020_122732 crossref_primary_10_1007_s11356_013_2100_4 crossref_primary_10_1016_j_envpol_2011_10_015 crossref_primary_10_1007_s11367_014_0841_z crossref_primary_10_1016_j_chemer_2008_12_001 crossref_primary_10_5026_jgeography_118_261 crossref_primary_10_1016_j_watres_2019_115182 crossref_primary_10_1016_j_geoderma_2008_05_005 crossref_primary_10_1021_es052534b crossref_primary_10_1016_j_jclepro_2023_137248 crossref_primary_10_3389_fclim_2022_954064 crossref_primary_10_1016_j_jafrearsci_2019_103644 crossref_primary_10_5194_soil_7_255_2021 crossref_primary_10_1177_0734242X15576024 crossref_primary_10_2134_jeq2016_05_0184 crossref_primary_10_1111_ejss_12298 crossref_primary_10_1016_j_jemep_2022_100852 crossref_primary_10_1016_j_chemosphere_2012_01_015 crossref_primary_10_1016_j_jhazmat_2012_11_026 crossref_primary_10_1016_j_pedsph_2022_07_004 crossref_primary_10_1021_acs_est_1c04719 crossref_primary_10_1007_s00244_020_00777_0 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000420 crossref_primary_10_1016_j_jhazmat_2008_05_011 crossref_primary_10_3390_min11121384 crossref_primary_10_1016_j_apgeochem_2005_11_003 crossref_primary_10_1021_acs_est_1c06982 crossref_primary_10_1016_j_scitotenv_2014_04_124 crossref_primary_10_1016_j_wasman_2016_07_032 crossref_primary_10_1007_s11356_013_1531_2 crossref_primary_10_1021_es070707m crossref_primary_10_1007_s11356_016_7217_9 crossref_primary_10_1016_j_envpol_2009_12_026 crossref_primary_10_1016_j_envpol_2019_03_124 crossref_primary_10_1007_s10653_017_9988_4 crossref_primary_10_1016_j_jhazmat_2016_05_046 crossref_primary_10_1016_j_wasman_2013_03_003 crossref_primary_10_3390_ma14123403 crossref_primary_10_1016_j_scitotenv_2014_12_073 crossref_primary_10_1016_j_rser_2021_111540 crossref_primary_10_2136_vzj2016_07_0056 crossref_primary_10_1016_j_geoderma_2008_02_007 crossref_primary_10_1007_s12665_013_2772_6 crossref_primary_10_1080_09064710_2012_743582 crossref_primary_10_1016_j_fuel_2014_09_068 crossref_primary_10_1155_2018_9504807 crossref_primary_10_1007_s11368_024_03936_1 crossref_primary_10_1016_j_sbspro_2015_06_235 crossref_primary_10_1016_j_apgeochem_2014_05_014 crossref_primary_10_1016_j_geoderma_2006_03_046 crossref_primary_10_1021_es800454y crossref_primary_10_1016_j_envint_2006_03_008 crossref_primary_10_1007_s10653_016_9859_4 crossref_primary_10_1021_acs_est_1c07731 crossref_primary_10_1021_es402123v crossref_primary_10_1016_j_apgeochem_2006_02_023 crossref_primary_10_1007_s11270_020_4450_0 crossref_primary_10_1021_es801924x crossref_primary_10_1021_es0503332 crossref_primary_10_1007_s11814_018_0174_x crossref_primary_10_1016_j_scitotenv_2017_02_052 crossref_primary_10_1016_j_cemconres_2009_02_001 crossref_primary_10_1111_j_1365_2389_2009_01201_x crossref_primary_10_1061__ASCE_HZ_2153_5515_0000734 crossref_primary_10_1016_j_jece_2019_103509 crossref_primary_10_1016_j_jhazmat_2024_134803 crossref_primary_10_1039_D4RA03506B crossref_primary_10_1002_jeq2_20288 crossref_primary_10_1016_j_watres_2008_12_009 crossref_primary_10_1080_15226510701232773 crossref_primary_10_1016_j_wasman_2009_05_016 crossref_primary_10_1177_0734242X10384310 crossref_primary_10_3390_ijerph16183398 crossref_primary_10_1071_EN13153 crossref_primary_10_1016_j_envpol_2007_01_002 crossref_primary_10_1016_j_geoderma_2008_06_005 crossref_primary_10_1016_j_geoderma_2022_115773 crossref_primary_10_1007_s00128_022_03555_x crossref_primary_10_3390_w11071339 crossref_primary_10_1016_j_chemosphere_2016_02_015 crossref_primary_10_1016_j_scitotenv_2025_179088 crossref_primary_10_1016_j_wasman_2006_09_002 crossref_primary_10_1016_j_geoderma_2008_06_010 crossref_primary_10_1016_j_cemconres_2010_08_001 crossref_primary_10_1016_j_conbuildmat_2021_125407 crossref_primary_10_1016_j_envpol_2017_04_016 |
Cites_doi | 10.1016/S0016-7037(98)00183-5 10.1111/j.1365-2389.1993.tb00436.x 10.1111/j.1365-2389.2004.00599.x 10.1021/es9603158 10.1016/S0016-7061(02)00369-5 10.1016/S0927-7757(98)00637-2 10.1021/es010085j 10.1021/es9701624 10.1016/0021-9797(89)90285-3 10.1021/es000123j 10.1016/S0016-7037(02)01042-6 10.1111/j.1365-2389.1997.tb00554.x 10.1021/es00002a022 10.1021/es950695h 10.1021/es0258879 10.1021/es0001106 10.1016/S0956-053X(01)00034-4 10.1021/es00086a012 10.1016/S0269-7491(03)00058-7 10.1016/0016-7037(94)90531-2 10.1111/j.1365-2389.1995.tb01835.x |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Chemical Society 2004 INIST-CNRS Copyright American Chemical Society Aug 15, 2004 Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2004 American Chemical Society – notice: 2004 INIST-CNRS – notice: Copyright American Chemical Society Aug 15, 2004 – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7TV 7X8 QVL |
DOI | 10.1021/es049885v |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Pollution Abstracts MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Pollution Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE Environment Abstracts Environment Abstracts Pollution Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 4395 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_340816 768146021 15382869 16025403 10_1021_es049885v ark_67375_TPS_8MH3NLBH_J e82509325 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Netherlands Europe |
GroupedDBID | - .K2 186 1AW 3R3 4.4 42X 4R4 53G 55A 5GY 5VS 63O 7~N 85S A AABXI ABDEX ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AETEA AFEFF AFMIJ AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 K78 LG6 MS NHB PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UNC UPT UQL VF5 VG9 VOH VQA W1F WH7 X XFK XZL YZZ ZCG --- -DZ -~X ..I .DC 6TJ AAHBH AAYOK ABJNI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ BSCLL CUPRZ GGK MS~ MW2 UBC XSW YV5 ZCA ~A~ AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION .HR 1WB 8WZ A6W ABHMW ACKIV IQODW MVM OHT RNS TAE UBX UBY VJK ZY4 CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7TV 7X8 08R ACDCL ADKFC AFDAS HR QVL |
ID | FETCH-LOGICAL-a640t-adc556d3da55c32a6d76852f9fddd8c3f4c7988dc3e31684a00dddfe8660cc93 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Tue Jan 05 18:04:15 EST 2021 Mon Jul 21 09:36:47 EDT 2025 Fri Jul 11 07:57:47 EDT 2025 Fri Jul 11 15:40:17 EDT 2025 Fri Jul 11 11:25:27 EDT 2025 Fri Jul 25 03:52:44 EDT 2025 Wed Feb 19 02:35:09 EST 2025 Mon Jul 21 09:16:40 EDT 2025 Tue Jul 01 03:25:55 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Wed Oct 30 09:20:56 EDT 2024 Thu Aug 27 13:42:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Cadmium Complexation Organic matter Pollutant behavior Mobility Surface complexation model Soil pollution Leaching Zinc Heavy metal Dissolved matter Transport process Sorption Lead Soil interaction Nickel Copper Speciation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a640t-adc556d3da55c32a6d76852f9fddd8c3f4c7988dc3e31684a00dddfe8660cc93 |
Notes | istex:1EDFAECE7628DA69FB7625A1C4B9913571B02C2F ark:/67375/TPS-8MH3NLBH-J SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15382869 |
PQID | 230132572 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_340816 proquest_miscellaneous_754707512 proquest_miscellaneous_66898220 proquest_miscellaneous_16180095 proquest_miscellaneous_14706220 proquest_journals_230132572 pubmed_primary_15382869 pascalfrancis_primary_16025403 crossref_citationtrail_10_1021_es049885v crossref_primary_10_1021_es049885v istex_primary_ark_67375_TPS_8MH3NLBH_J acs_journals_10_1021_es049885v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2004-08-15 |
PublicationDateYYYYMMDD | 2004-08-15 |
PublicationDate_xml | – month: 08 year: 2004 text: 2004-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2004 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Tipping E. (es049885vb00006/es049885vb00006_1) 2003; 125 Voegelin A. (es049885vb00009/es049885vb00009_1) 2001; 35 Sloot (es049885vb00012/es049885vb00012_1) 1996; 178 Temminghoff E. J. M. (es049885vb00005/es049885vb00005_1) 1997; 31 Boekhold A. E. (es049885vb00023/es049885vb00023_1) 1993; 44 de Wit J. C. M. Ph.D. (es049885vb00032/es049885vb00032_1) 1992 Lord C. J. Ph.D. (es049885vb00016/es049885vb00016_1) 1980 Ferdelman T. G. M.Sc. (es049885vb00019/es049885vb00019_1) 1988 Thurman E. M. (es049885vb00014/es049885vb00014_1) 1981; 15 Canfield D. E. Ph.D. (es049885vb00017/es049885vb00017_1) 1988 es049885vb00037/es049885vb00037_1 Gooddy D. C. (es049885vb00022/es049885vb00022_1) 1995; 46 Kosson D. S. (es049885vb00011/es049885vb00011_1) 2002; 19 Allison J. D. (es049885vb00025/es049885vb00025_1) 1991 Blakemore L. C. (es049885vb00020/es049885vb00020_1) 1987 Meima J. A. (es049885vb00013/es049885vb00013_1) 1997; 31 Lofts S. (es049885vb00010/es049885vb00010_1) 1998; 62 Benedetti M. F. (es049885vb00026/es049885vb00026_1) 1995; 29 Meima J. A. (es049885vb00034/es049885vb00034_1) 1998; 32 Dzombak D. A. (es049885vb00033/es049885vb00033_1) 1990 McBride M. B. (es049885vb00036/es049885vb00036_1) 1994 es049885vb00043/es049885vb00043_1 Sauve S. (es049885vb00002/es049885vb00002_1) 2000; 34 Weng L. (es049885vb00004/es049885vb00004_1) 2001; 35 Kostka J. E. (es049885vb00018/es049885vb00018_1) 1994; 58 Zhu C. (es049885vb00038/es049885vb00038_1) 2002; 188 Dijkstra J. J. (es049885vb00029/es049885vb00029_1) 2002; 22 McBride M. B. (es049885vb00001/es049885vb00001_1) 1997; 48 Lumsdon D. G. (es049885vb00041/es049885vb00041_1) 2004; 55 es049885vb00042/es049885vb00042_1 Meeussen J. C. L. (es049885vb00024/es049885vb00024_1) 2003; 37 Gustafson J. P. (es049885vb00008/es049885vb00008_1) 2003; 37 Cances B. (es049885vb00007/es049885vb00007_1) 2003; 113 Kinniburgh D. G. (es049885vb00027/es049885vb00027_1) 1996; 30 Houba V. J. G. (es049885vb00021/es049885vb00021_1) 1989 Buffle J. (es049885vb00039/es049885vb00039_1) 1988 Milne C. J. (es049885vb00030/es049885vb00030_1) 2001; 35 Kinniburgh D. G. (es049885vb00028/es049885vb00028_1) 1999; 151 Filius J. D. (es049885vb00040/es049885vb00040_1) 2003; 67 Milne C. J. (es049885vb00031/es049885vb00031_1) 2003; 37 Weng L. (es049885vb00003/es049885vb00003_1) 2002; 36 Hiemstra T. (es049885vb00035/es049885vb00035_1) 1989; 133 |
References_xml | – volume: 31 start-page: 1115 year: 1997 ident: es049885vb00005/es049885vb00005_1 publication-title: Environ. Sci. Technol. – volume-title: Surface complexation model ing: hydrous ferric oxide year: 1990 ident: es049885vb00033/es049885vb00033_1 – volume: 62 start-page: 2625 year: 1998 ident: es049885vb00010/es049885vb00010_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(98)00183-5 – volume: 44 start-page: 96 year: 1993 ident: es049885vb00023/es049885vb00023_1 publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1993.tb00436.x – volume: 55 start-page: 285 year: 2004 ident: es049885vb00041/es049885vb00041_1 publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2004.00599.x – volume: 31 start-page: 1276 year: 1997 ident: es049885vb00013/es049885vb00013_1 publication-title: J. Environ. Sci. Technol. doi: 10.1021/es9603158 – volume-title: University of Delaware year: 1988 ident: es049885vb00019/es049885vb00019_1 – volume-title: Geochemical assessment model for environmental systems: version 3.11 databases and version 3.0 user's manual year: 1991 ident: es049885vb00025/es049885vb00025_1 – volume-title: Wageningen University year: 1992 ident: es049885vb00032/es049885vb00032_1 – volume-title: Environmental Chemistry of Soils year: 1994 ident: es049885vb00036/es049885vb00036_1 – volume: 19 start-page: 204 year: 2002 ident: es049885vb00011/es049885vb00011_1 publication-title: Chem. Eng. Sci. – volume-title: University of Delaware year: 1980 ident: es049885vb00016/es049885vb00016_1 – volume: 36 start-page: 4810 year: 2002 ident: es049885vb00003/es049885vb00003_1 publication-title: Environ. Sci. Technol. – volume: 113 start-page: 355 year: 2003 ident: es049885vb00007/es049885vb00007_1 publication-title: Geoderma doi: 10.1016/S0016-7061(02)00369-5 – volume: 151 start-page: 166 year: 1999 ident: es049885vb00028/es049885vb00028_1 publication-title: J. Colloid Surf., A doi: 10.1016/S0927-7757(98)00637-2 – volume: 188 start-page: 32 year: 2002 ident: es049885vb00038/es049885vb00038_1 publication-title: Chem. Geol. – volume: 35 start-page: 4443 year: 2001 ident: es049885vb00004/es049885vb00004_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es010085j – volume-title: A series of syllabi: Part 5. Soil Analysis Procedures year: 1989 ident: es049885vb00021/es049885vb00021_1 – volume: 37 start-page: 2774 year: 2003 ident: es049885vb00008/es049885vb00008_1 publication-title: Environ. Sci. Technol. – volume: 32 start-page: 693 year: 1998 ident: es049885vb00034/es049885vb00034_1 publication-title: J. Environ. Sci. Technol. doi: 10.1021/es9701624 – volume: 133 start-page: 117 year: 1989 ident: es049885vb00035/es049885vb00035_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(89)90285-3 – volume-title: Complexation reactions in aquatic systems year: 1988 ident: es049885vb00039/es049885vb00039_1 – volume: 35 start-page: 2059 year: 2001 ident: es049885vb00030/es049885vb00030_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es000123j – volume: 67 start-page: 1474 year: 2003 ident: es049885vb00040/es049885vb00040_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(02)01042-6 – volume: 48 start-page: 346 year: 1997 ident: es049885vb00001/es049885vb00001_1 publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1997.tb00554.x – volume: 29 start-page: 457 year: 1995 ident: es049885vb00026/es049885vb00026_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00002a022 – ident: es049885vb00043/es049885vb00043_1 – volume: 30 start-page: 1698 year: 1996 ident: es049885vb00027/es049885vb00027_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es950695h – volume: 37 start-page: 971 year: 2003 ident: es049885vb00031/es049885vb00031_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0258879 – ident: es049885vb00037/es049885vb00037_1 – volume: 35 start-page: 1657 year: 2001 ident: es049885vb00009/es049885vb00009_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0001106 – volume: 22 start-page: 541 year: 2002 ident: es049885vb00029/es049885vb00029_1 publication-title: J. Waste Manage. doi: 10.1016/S0956-053X(01)00034-4 – ident: es049885vb00042/es049885vb00042_1 – volume: 15 start-page: 466 year: 1981 ident: es049885vb00014/es049885vb00014_1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00086a012 – volume: 125 start-page: 225 year: 2003 ident: es049885vb00006/es049885vb00006_1 publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00058-7 – volume: 58 start-page: 1710 year: 1994 ident: es049885vb00018/es049885vb00018_1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90531-2 – volume: 34 start-page: 1131 year: 2000 ident: es049885vb00002/es049885vb00002_1 publication-title: Environ. Sci. Technol. – volume: 178 start-page: 126 year: 1996 ident: es049885vb00012/es049885vb00012_1 publication-title: Sci. Total Environ. – volume-title: Yale University year: 1988 ident: es049885vb00017/es049885vb00017_1 – volume: 46 start-page: 285 year: 1995 ident: es049885vb00022/es049885vb00022_1 publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1995.tb01835.x – volume: 37 start-page: 1182 year: 2003 ident: es049885vb00024/es049885vb00024_1 publication-title: Environ. Sci. Technol. – volume-title: Methods for chemical analysis of soils year: 1987 ident: es049885vb00020/es049885vb00020_1 |
SSID | ssj0002308 |
Score | 2.3074086 |
Snippet | In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an... In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an... The leaching behavior of nickel, copper, zinc, cadmium, and lead from eight different contaminated soils was studied over a wide range of pH values using an... |
SourceID | wageningen proquest pubmed pascalfrancis crossref istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4390 |
SubjectTerms | Applied sciences Biological and physicochemical properties of pollutants. Interaction in the soil Contaminated sediments dissolved organic-matter Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Heavy metal content Heavy metals humic substances Hydrogen-Ion Concentration incinerator bottom ash ion-binding Leaching Metals Metals, Heavy - analysis Metals, Heavy - chemistry Models, Theoretical nica-donnan model Pollution Pollution, environment geology sandy soil Soil and sediments pollution Soil contamination Soil Pollutants - analysis Soil sciences Solubility solubility control sorption speciation waste Water |
Title | Leaching of Heavy Metals from Contaminated Soils: An Experimental and Modeling Study |
URI | http://dx.doi.org/10.1021/es049885v https://api.istex.fr/ark:/67375/TPS-8MH3NLBH-J/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15382869 https://www.proquest.com/docview/230132572 https://www.proquest.com/docview/14706220 https://www.proquest.com/docview/16180095 https://www.proquest.com/docview/66898220 https://www.proquest.com/docview/754707512 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F340816 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLbGdtkO_BgMwmBYgBCXbE4cOy63MTpV0zohtYjeLMeOJbQqRU27MU5c-Tf5S3ivSdNOtOOUg784sf2e_Wy_9z1C3lrFOE8zFzKR42kVE6HKhA1lplKeR8yIWbq37oXsfEnOBmKwQd6sucGPo6O8BCNWKXF1j2zFEpQX7Z-TXjPdgg2t5mkKWlwO5vRBy6_i0mPLW0vPFvbiD3SFNCX0hq_SWKyyM3fI9jXodjELdlpafE4fkE_zEJ7K5-TycDrJDu3Pfxkd72rXQ3K_Nj7pcSUtj8hGXuySnSVKwl2y115EvgG0Vv3yMfl6Xvtd0pGnndxc3dBuDpCSYoQKRZYrg241YMHS3ujbsPzw59dvelzQ9lIOAWoKRzH9GgbBU_RhvHlC-qft_kknrLMyhEYmbBIaZ4WQjjsjhOWxkQ52LCL2Le-cU5b7xCIHmrN4vCpVYhiDAp8rKZm1Lb5HNotRkT8j1EcuTWHCSKMMdkE2ymC-8UnkvcfwXpkE5ABGTddKVerZfXkc6abnAvJ-PqDa1pTmmFljuAr6uoF-r3g8VoHezaSiQZjxJTq-pUL3P_e06nb4xfnHjj6DP7slNosqJbILMB6Q_bkcLf4fJBX2_iKNA_KqKQVtxisaU-SjKTQxSZmMY3YHQkYK7eL1CCkVkjJCHXQNIhXwmRRMvYA8rWR80QBYAGMlWwHhC6HXBea1KjVSkdeHi_p6OtbFEB9QQ6l5ghlcnv9vxPbJduX6pMJIvCCbk_E0fwlW3SQ7mGn1X4atSHw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgO7Ad-DEYhMFmIYS4ZDhx7LjcytQpjLZCahG9WY6TSGhVipp2Y5y48m_yl_BekiYd6oBTDn5xbOf5-dl-7_sIeWkV4zyME5eJFE-rmHBVLKwrYxXy1GNGlHRvg6GMPgVnEzGpYXIwFwYaUUBNRXmJ36ILeG_SAnxZpcTFbbINToiP2tw9GTVWF1xptWIr6HA5WaEIrb-KK5Atrq1A2ziY3zAi0hQwKFnFZrHJ3dwlO5cwxfMy52ltDTq9V5EZla0vQ0_Oj5eL-Nh-_wPY8f-6d5_crV1R2q105wG5leZ7ZHcNoHCP7PfaPDgQrQ1B8ZB87tdRmHSW0Sg1F1d0kIJIQTFfhSLmlcEgG_Bn6Wj2ZVq8_fXjJ-3mtLfGKEBNnlAkY8OUeIoRjVePyPi0Nz6J3JqjwTUyYAvXJFYImfDECGG5b2QC-xfhZ50sSRJleRZYRERLLB62ShUYxqAgS5WUzNoO3ydb-SxPnxCaeUkYgvkIvRj2RNaLwfpkgZdlGSb7ysAhhzBwup5ihS5vz31PNyPnkNer_6ptDXCOPBvTTaIvGtGvFarHJqFXpXI0EmZ-jmFwodDjjyOtBhEf9t9F-gxadk172iolYg0w7pCDlTq17QeF9TgYTN8hR00pzG28sDF5OltCF4OQSd9nf5GQnkIv-WYJKRVCNEId9AaJUMBnQnD8HPK4UvW2A7Ac-kp2HMJb3dc5slwVGoHJ66NGfbmc63yKD9RwzQPkc3n6rz92RO5E40Ff998PPxyQnSooSrmeeEa2FvNl-hz8vUV8WE7032WSUN0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgk9D2wI_BIAw2CyHES0YSx47LWxmtymjLpBbRN8uxYwmtSqem3RhPvPJv8pdwl6ZphzbgqQ_54trO3fls331HyEsjA8aS1PoBz_C0KuC-TLnxRSoTloWB5mW5t15fdD7HxyM-qjaKmAsDnSigpaK8xEetPrOuYhgI32QF-LNS8vPbZBOv61Cim0eD2vKCOy2XFQsaTIyWTELrr-IqZIorq9AmTug3jIrUBUyMW1S0uM7l3CZbF6DmeZn3tLYOte-RT_UIyvCT08P5LD003_8gd_z_Id4ndyuXlDYXMvSA3MryHbK9RlS4Q3Zbq3w4gFYGoXhIvnSraEw6cbST6fNL2ssAUlDMW6HIfaUx2Ab8WjqYfB0Xb3_9-EmbOW2tVRagOrcUi7JhajzFyMbLR2TYbg2POn5Vq8HXIg5mvraGc2GZ1ZwbFmlhYR_DI9dw1lppmIsNMqNZg4euQsY6COCBy6QQgTENtks28kmePSHUhTZJwIwkYQp7IxOmYIVcHDrnMOlXxB7Zh8lTlaoVqrxFj0JVz5xHXi-_rTIV0TnW2xhfB31RQ88W7B7XgV6VAlIj9PQUw-ESroYnAyV7HdbvvuuoY-jZFQlaNSmQcyBgHtlbitSq_yC0IQPDGXnkoH4KOo4XNzrPJnMYYpwEIoqCvyBEKNFbvhkhhESqRmiD3oBIOPxNAg6gRx4vxH01AFgWIykaHmEr-Vc5VrsqFBKUV0eO6mI-VfkYf1DKFYuxrsvTf32xA3Ln5H1bdT_0P-6RrUVslPRD_oxszKbz7Dm4fbN0v9T13wlCU2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaching+of+Heavy+Metals+from+Contaminated+Soils%3A+An+Experimental+and+Modeling+Study&rft.jtitle=Environmental+science+%26+technology&rft.au=Dijkstra%2C+J+J&rft.au=Meeussen%2C+JCL&rft.au=Comans%2C+RNJ&rft.date=2004-08-15&rft.issn=0013-936X&rft.volume=38&rft.issue=16&rft.spage=4390&rft.epage=4395&rft_id=info:doi/10.1021%2Fes049885v&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |