Leaching of Heavy Metals from Contaminated Soils:  An Experimental and Modeling Study

In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling....

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 38; no. 16; pp. 4390 - 4395
Main Authors Dijkstra, Joris J, Meeussen, Johannes C. L, Comans, Rob N. J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.08.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in “V-shaped” leaching curves with orders of magnitude changes in solution concentrations. The “multisurface” model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The “multisurface” modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.
AbstractList In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pl-l-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters. [PUBLICATION ABSTRACT]
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.
The leaching behavior of nickel, copper, zinc, cadmium, and lead from eight different contaminated soils was studied over a wide range of pH values using an original experimental approach based on batch pHstatic leaching experiments in combination with selective chemical extractions. The resulting data were used to obtain geochemical fingerprints of the studied soils, and a computer speciation model was applied to identify for each element the processes most likely to control leaching. Results revealed that the leached concentrations of the heavy metals were generally much lower than the total concentrations, but they showed a strong pH dependence. Concentrations dropped over two orders of magnitude between pH 2 and neutral pH and then increased from neutral pH toward strongly alkaline pH values. Model predictions of heavy-metal leaching were excellent for Ni, Cu, and Cd. Organic matter was the predominant reactive surface in the solid phase, especially for Cu, Ni, and Cd, over almost the entire pH range, while iron and aluminum oxides contributed significantly to the overall adsorption of all metals investigated around pH 8.
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me super(2+)) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in “V-shaped” leaching curves with orders of magnitude changes in solution concentrations. The “multisurface” model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The “multisurface” modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling. The leached concentrations of the heavy metals are generally much lower than the total concentrations and show a strong pH dependency, resulting in "V-shaped" leaching curves with orders of magnitude changes in solution concentrations. The "multisurface" model used incorporates adsorption to dissolved and solid organic matter (NICA-Donnan), iron/aluminum (hydr)oxide (generalized two-layer model) and clay (Donnan model). These models were applied without modifications, and only the standard set of binding constants and parameters was used (i.e., without any fitting). The model predictions of heavy metal leaching are generally adequate and sometimes excellent. Results from speciation calculations are consistent with the well-recognized importance of organic matter as the dominant reactive solid phase in soils. The observed differences between soils with respect to element speciation in the solid phase correspond to the relative amounts of the reactive surfaces present in the soils. In the solution phase, complexes with dissolved organic matter (DOM) are predominant over most of the pH range. Free metal ions (Me2+) are generally the dominant species below pH 4. The combination of the experimental and modeling approach as used in this study is shown to be promising because it leads to a more fundamental understanding of the pH-dependent leaching processes in soils. The "multisurface" modeling approach, with the selected sorption models, is shown to be able to adequately predict the leaching of heavy metals from contaminated soils over a wide range of conditions, without any fitting of parameters.
Author Meeussen, Johannes C. L
Dijkstra, Joris J
Comans, Rob N. J
Author_xml – sequence: 1
  givenname: Joris J
  surname: Dijkstra
  fullname: Dijkstra, Joris J
– sequence: 2
  givenname: Johannes C. L
  surname: Meeussen
  fullname: Meeussen, Johannes C. L
– sequence: 3
  givenname: Rob N. J
  surname: Comans
  fullname: Comans, Rob N. J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16025403$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15382869$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URC-w4AXQCAkQi6G-jD2e7kpUCCgBpESCnXVie4rLxBPsmbbZseU1eRI8SkilgujqLM73_-d6iPZ86y1Cjwl-RTAlxzbiopKSX95DB4RTnHPJyR46wJiwvGLiyz46jPECY0wZlg_QPuFMUimqA_R5YkF_df48a-tsbOFynU1tB03M6tAus1HrO1g6D5012ax1TTz59eNnduqzs-uVDW5pU77JwJts2hrbDEazrjfrh-h-nVzso208QvM3Z_PROJ98fPtudDrJQRS4y8FozoVhBjjXjIIwpZCc1lVtjJGa1YUu02RGM8uIkAVgnBK1lUJgrSt2hE42tldwbn2qbr3yELSLqgWnGrcIENbqqg_KN0NY9YuoWIElEUn8YiNehfZ7b2Onli5q2zTgbdtHVfKixCUnNJHP_0sKIStJKb4TJIJIjCt-N5hKi43j01vgRdsHn3aq0jEJo7wc-nuyhfrF0hq1SpcZ5v5z5wQ82wIQNTR1AD_saMcJTHmBWeKON5wObYzB1kq7DjqX3iCAaxTBavg4tfu4pHh5S7Ez_Qebb1gXO3u9AyF8U6JkJVfzTzMlp2P2YfJ6rN7fdA063oz9t-9v8ArxWw
CODEN ESTHAG
CitedBy_id crossref_primary_10_2134_jeq2011_0115
crossref_primary_10_1016_j_envpol_2009_03_021
crossref_primary_10_1111_ejss_13575
crossref_primary_10_1080_09593330_2021_1936202
crossref_primary_10_1016_j_wasman_2006_01_020
crossref_primary_10_1557_PROC_932_50_1
crossref_primary_10_1016_j_chemosphere_2007_08_073
crossref_primary_10_3390_min10100846
crossref_primary_10_1016_j_scitotenv_2023_164512
crossref_primary_10_1089_ees_2006_0234
crossref_primary_10_1016_j_jhazmat_2011_03_119
crossref_primary_10_1071_EN23075
crossref_primary_10_1007_s11104_012_1426_x
crossref_primary_10_1016_j_ecoenv_2018_01_035
crossref_primary_10_1007_s11356_021_14320_8
crossref_primary_10_1007_s11356_017_9139_6
crossref_primary_10_1016_j_apgeochem_2016_07_006
crossref_primary_10_1007_s11368_010_0290_7
crossref_primary_10_1016_j_scitotenv_2023_167220
crossref_primary_10_1007_s10653_012_9449_z
crossref_primary_10_1016_j_jhazmat_2011_05_089
crossref_primary_10_1021_es900555g
crossref_primary_10_1021_es0505806
crossref_primary_10_1016_j_envpol_2018_06_004
crossref_primary_10_1016_j_jhazmat_2007_01_102
crossref_primary_10_1016_j_watres_2024_122336
crossref_primary_10_1016_j_envpol_2012_07_045
crossref_primary_10_1016_j_apgeochem_2018_07_012
crossref_primary_10_1007_s12665_012_1853_2
crossref_primary_10_1007_s11356_016_6456_0
crossref_primary_10_1016_j_scitotenv_2023_163647
crossref_primary_10_1016_j_wasman_2018_02_002
crossref_primary_10_1016_j_jhazmat_2016_02_025
crossref_primary_10_1021_es3027264
crossref_primary_10_2136_sssaj2010_0146
crossref_primary_10_1016_j_chemosphere_2007_07_013
crossref_primary_10_1111_ejss_12226
crossref_primary_10_1016_j_jhazmat_2008_01_058
crossref_primary_10_1016_j_gexplo_2008_05_003
crossref_primary_10_1007_s12649_013_9219_x
crossref_primary_10_1016_j_scitotenv_2024_177769
crossref_primary_10_2136_vzj2012_0152
crossref_primary_10_1016_j_geoderma_2015_11_021
crossref_primary_10_1016_j_apgeochem_2008_02_025
crossref_primary_10_1016_j_scitotenv_2017_08_248
crossref_primary_10_1016_j_pce_2022_103153
crossref_primary_10_1021_acs_est_4c04812
crossref_primary_10_1016_j_apgeochem_2012_11_003
crossref_primary_10_1080_09593330_2012_670270
crossref_primary_10_1371_journal_pone_0229794
crossref_primary_10_1016_j_jhazmat_2009_04_097
crossref_primary_10_1016_j_jhazmat_2014_05_102
crossref_primary_10_1016_j_envpol_2011_08_006
crossref_primary_10_1007_s41742_020_00293_y
crossref_primary_10_1016_j_jhazmat_2018_07_075
crossref_primary_10_1016_j_sciaf_2024_e02117
crossref_primary_10_1016_j_jhydrol_2010_05_024
crossref_primary_10_1515_jbcpp_2021_0173
crossref_primary_10_1007_s11783_010_0245_7
crossref_primary_10_1016_j_chemosphere_2019_124932
crossref_primary_10_3390_su13168805
crossref_primary_10_1016_j_chemosphere_2017_09_088
crossref_primary_10_1111_j_1365_2389_2009_01139_x
crossref_primary_10_1007_s10653_011_9385_3
crossref_primary_10_1097_SS_0000000000000218
crossref_primary_10_1016_j_scitotenv_2023_166100
crossref_primary_10_1016_j_wasman_2016_07_036
crossref_primary_10_1016_j_scitotenv_2022_159119
crossref_primary_10_1016_j_jhazmat_2010_03_087
crossref_primary_10_1016_j_wasman_2016_07_038
crossref_primary_10_1016_j_envpol_2020_115573
crossref_primary_10_1016_j_gca_2009_10_018
crossref_primary_10_1016_j_gexplo_2005_08_092
crossref_primary_10_1016_j_envpol_2011_05_002
crossref_primary_10_3390_agronomy14071520
crossref_primary_10_1007_s11270_015_2426_2
crossref_primary_10_1021_es048154s
crossref_primary_10_1897_04_621R_1
crossref_primary_10_1016_j_aca_2008_10_066
crossref_primary_10_1016_j_chemosphere_2020_127673
crossref_primary_10_1080_15320383_2013_770445
crossref_primary_10_3390_cryst11070719
crossref_primary_10_1007_s11270_007_9357_5
crossref_primary_10_1016_j_apgeochem_2018_01_014
crossref_primary_10_1007_s13762_014_0671_3
crossref_primary_10_1016_j_marpolbul_2023_115062
crossref_primary_10_1016_j_enggeo_2011_09_004
crossref_primary_10_1016_j_chemosphere_2020_126212
crossref_primary_10_1016_j_scitotenv_2024_172588
crossref_primary_10_1007_s10653_015_9695_y
crossref_primary_10_1016_j_scitotenv_2009_03_014
crossref_primary_10_1016_j_scitotenv_2016_06_001
crossref_primary_10_1016_j_chemgeo_2019_02_038
crossref_primary_10_1080_15569543_2020_1815787
crossref_primary_10_1080_15320383_2011_620047
crossref_primary_10_1021_acssuschemeng_3c03148
crossref_primary_10_2136_sssaj2018_03_0104
crossref_primary_10_1021_acs_est_9b04104
crossref_primary_10_2136_sssaj2006_0118
crossref_primary_10_1016_j_geoderma_2008_11_040
crossref_primary_10_1016_j_ecoenv_2024_116458
crossref_primary_10_1007_s11104_014_2128_3
crossref_primary_10_1071_EN11025
crossref_primary_10_5194_bg_13_1519_2016
crossref_primary_10_1016_j_apgeochem_2016_02_009
crossref_primary_10_1007_s11270_007_9410_4
crossref_primary_10_1016_j_jhazmat_2012_11_058
crossref_primary_10_1007_s11368_015_1226_z
crossref_primary_10_1016_j_chemgeo_2018_12_030
crossref_primary_10_1080_03650340_2016_1147647
crossref_primary_10_2134_jeq2005_0312
crossref_primary_10_1007_s11270_009_0061_5
crossref_primary_10_1007_s12517_018_4021_5
crossref_primary_10_1021_es500257e
crossref_primary_10_3390_environments5060069
crossref_primary_10_1016_j_jhazmat_2023_132707
crossref_primary_10_1007_s11104_020_04651_9
crossref_primary_10_1016_j_jclepro_2020_123337
crossref_primary_10_1016_j_jhazmat_2016_01_005
crossref_primary_10_1016_j_scitotenv_2021_150332
crossref_primary_10_1111_j_1365_2389_2007_00894_x
crossref_primary_10_1016_j_chemosphere_2007_03_001
crossref_primary_10_1016_j_jhazmat_2021_125710
crossref_primary_10_1016_j_envpol_2017_03_051
crossref_primary_10_1080_00207233_2014_983331
crossref_primary_10_1016_j_jes_2023_09_034
crossref_primary_10_1016_j_envpol_2012_07_029
crossref_primary_10_1021_es3037324
crossref_primary_10_2136_sssaj2010_0006
crossref_primary_10_1007_s11368_023_03518_7
crossref_primary_10_1016_j_geoderma_2021_115517
crossref_primary_10_1016_j_apgeochem_2007_12_032
crossref_primary_10_1016_j_jhazmat_2013_05_017
crossref_primary_10_1021_es051916e
crossref_primary_10_1007_s00244_015_0133_z
crossref_primary_10_1016_j_scitotenv_2020_139921
crossref_primary_10_1016_j_watres_2019_05_064
crossref_primary_10_1016_j_jenvman_2019_01_096
crossref_primary_10_3390_ijerph20032014
crossref_primary_10_1089_ees_2009_0322
crossref_primary_10_1016_j_sciaf_2024_e02426
crossref_primary_10_1016_j_jenvman_2022_117035
crossref_primary_10_1016_j_wasman_2014_12_018
crossref_primary_10_1111_ejss_13297
crossref_primary_10_1061__ASCE_EE_1943_7870_0000721
crossref_primary_10_1016_j_geoderma_2016_06_010
crossref_primary_10_1016_j_jenvrad_2021_106778
crossref_primary_10_1002_etc_2642
crossref_primary_10_1016_j_jhazmat_2006_05_106
crossref_primary_10_3389_fenvs_2022_1017809
crossref_primary_10_4491_KSEE_2018_40_6_227
crossref_primary_10_1007_s11270_008_9622_2
crossref_primary_10_1016_j_jclepro_2022_131569
crossref_primary_10_1016_j_biortech_2008_11_009
crossref_primary_10_1016_j_chemosphere_2020_126937
crossref_primary_10_3390_w15203690
crossref_primary_10_1016_j_scitotenv_2008_12_032
crossref_primary_10_1007_s13762_020_02694_0
crossref_primary_10_1016_j_envint_2006_09_017
crossref_primary_10_1080_15226514_2011_628714
crossref_primary_10_1016_j_chemosphere_2015_10_109
crossref_primary_10_1016_j_apgeochem_2024_106063
crossref_primary_10_1007_s10653_021_01010_0
crossref_primary_10_1007_s10661_015_4271_6
crossref_primary_10_1021_es0709223
crossref_primary_10_1016_j_chemosphere_2010_09_042
crossref_primary_10_1007_s10653_021_01071_1
crossref_primary_10_1016_j_jes_2016_05_032
crossref_primary_10_1007_s10661_017_5925_3
crossref_primary_10_1016_j_wasman_2010_08_017
crossref_primary_10_1134_S2070205120010268
crossref_primary_10_1007_s11368_023_03468_0
crossref_primary_10_1016_j_chemosphere_2007_09_046
crossref_primary_10_1016_j_wasman_2018_08_053
crossref_primary_10_2134_jeq2012_0116
crossref_primary_10_1088_1755_1315_191_1_012010
crossref_primary_10_1021_es400526q
crossref_primary_10_1371_journal_pone_0133920
crossref_primary_10_1016_j_mineng_2012_11_010
crossref_primary_10_1016_j_gca_2017_06_014
crossref_primary_10_1080_02757540_2010_494159
crossref_primary_10_1089_ees_2007_0226
crossref_primary_10_1016_j_ecoenv_2019_03_106
crossref_primary_10_1016_j_scitotenv_2015_03_021
crossref_primary_10_1144_qjegh2012_025
crossref_primary_10_1016_j_jhazmat_2019_121502
crossref_primary_10_3985_jjsmcwm_20_24
crossref_primary_10_1016_j_jhazmat_2020_122732
crossref_primary_10_1007_s11356_013_2100_4
crossref_primary_10_1016_j_envpol_2011_10_015
crossref_primary_10_1007_s11367_014_0841_z
crossref_primary_10_1016_j_chemer_2008_12_001
crossref_primary_10_5026_jgeography_118_261
crossref_primary_10_1016_j_watres_2019_115182
crossref_primary_10_1016_j_geoderma_2008_05_005
crossref_primary_10_1021_es052534b
crossref_primary_10_1016_j_jclepro_2023_137248
crossref_primary_10_3389_fclim_2022_954064
crossref_primary_10_1016_j_jafrearsci_2019_103644
crossref_primary_10_5194_soil_7_255_2021
crossref_primary_10_1177_0734242X15576024
crossref_primary_10_2134_jeq2016_05_0184
crossref_primary_10_1111_ejss_12298
crossref_primary_10_1016_j_jemep_2022_100852
crossref_primary_10_1016_j_chemosphere_2012_01_015
crossref_primary_10_1016_j_jhazmat_2012_11_026
crossref_primary_10_1016_j_pedsph_2022_07_004
crossref_primary_10_1021_acs_est_1c04719
crossref_primary_10_1007_s00244_020_00777_0
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000420
crossref_primary_10_1016_j_jhazmat_2008_05_011
crossref_primary_10_3390_min11121384
crossref_primary_10_1016_j_apgeochem_2005_11_003
crossref_primary_10_1021_acs_est_1c06982
crossref_primary_10_1016_j_scitotenv_2014_04_124
crossref_primary_10_1016_j_wasman_2016_07_032
crossref_primary_10_1007_s11356_013_1531_2
crossref_primary_10_1021_es070707m
crossref_primary_10_1007_s11356_016_7217_9
crossref_primary_10_1016_j_envpol_2009_12_026
crossref_primary_10_1016_j_envpol_2019_03_124
crossref_primary_10_1007_s10653_017_9988_4
crossref_primary_10_1016_j_jhazmat_2016_05_046
crossref_primary_10_1016_j_wasman_2013_03_003
crossref_primary_10_3390_ma14123403
crossref_primary_10_1016_j_scitotenv_2014_12_073
crossref_primary_10_1016_j_rser_2021_111540
crossref_primary_10_2136_vzj2016_07_0056
crossref_primary_10_1016_j_geoderma_2008_02_007
crossref_primary_10_1007_s12665_013_2772_6
crossref_primary_10_1080_09064710_2012_743582
crossref_primary_10_1016_j_fuel_2014_09_068
crossref_primary_10_1155_2018_9504807
crossref_primary_10_1007_s11368_024_03936_1
crossref_primary_10_1016_j_sbspro_2015_06_235
crossref_primary_10_1016_j_apgeochem_2014_05_014
crossref_primary_10_1016_j_geoderma_2006_03_046
crossref_primary_10_1021_es800454y
crossref_primary_10_1016_j_envint_2006_03_008
crossref_primary_10_1007_s10653_016_9859_4
crossref_primary_10_1021_acs_est_1c07731
crossref_primary_10_1021_es402123v
crossref_primary_10_1016_j_apgeochem_2006_02_023
crossref_primary_10_1007_s11270_020_4450_0
crossref_primary_10_1021_es801924x
crossref_primary_10_1021_es0503332
crossref_primary_10_1007_s11814_018_0174_x
crossref_primary_10_1016_j_scitotenv_2017_02_052
crossref_primary_10_1016_j_cemconres_2009_02_001
crossref_primary_10_1111_j_1365_2389_2009_01201_x
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000734
crossref_primary_10_1016_j_jece_2019_103509
crossref_primary_10_1016_j_jhazmat_2024_134803
crossref_primary_10_1039_D4RA03506B
crossref_primary_10_1002_jeq2_20288
crossref_primary_10_1016_j_watres_2008_12_009
crossref_primary_10_1080_15226510701232773
crossref_primary_10_1016_j_wasman_2009_05_016
crossref_primary_10_1177_0734242X10384310
crossref_primary_10_3390_ijerph16183398
crossref_primary_10_1071_EN13153
crossref_primary_10_1016_j_envpol_2007_01_002
crossref_primary_10_1016_j_geoderma_2008_06_005
crossref_primary_10_1016_j_geoderma_2022_115773
crossref_primary_10_1007_s00128_022_03555_x
crossref_primary_10_3390_w11071339
crossref_primary_10_1016_j_chemosphere_2016_02_015
crossref_primary_10_1016_j_scitotenv_2025_179088
crossref_primary_10_1016_j_wasman_2006_09_002
crossref_primary_10_1016_j_geoderma_2008_06_010
crossref_primary_10_1016_j_cemconres_2010_08_001
crossref_primary_10_1016_j_conbuildmat_2021_125407
crossref_primary_10_1016_j_envpol_2017_04_016
Cites_doi 10.1016/S0016-7037(98)00183-5
10.1111/j.1365-2389.1993.tb00436.x
10.1111/j.1365-2389.2004.00599.x
10.1021/es9603158
10.1016/S0016-7061(02)00369-5
10.1016/S0927-7757(98)00637-2
10.1021/es010085j
10.1021/es9701624
10.1016/0021-9797(89)90285-3
10.1021/es000123j
10.1016/S0016-7037(02)01042-6
10.1111/j.1365-2389.1997.tb00554.x
10.1021/es00002a022
10.1021/es950695h
10.1021/es0258879
10.1021/es0001106
10.1016/S0956-053X(01)00034-4
10.1021/es00086a012
10.1016/S0269-7491(03)00058-7
10.1016/0016-7037(94)90531-2
10.1111/j.1365-2389.1995.tb01835.x
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
2004 INIST-CNRS
Copyright American Chemical Society Aug 15, 2004
Wageningen University & Research
Copyright_xml – notice: Copyright © 2004 American Chemical Society
– notice: 2004 INIST-CNRS
– notice: Copyright American Chemical Society Aug 15, 2004
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7TV
7X8
QVL
DOI 10.1021/es049885v
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Pollution Abstracts
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE
Environment Abstracts
Environment Abstracts
Pollution Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 4395
ExternalDocumentID oai_library_wur_nl_wurpubs_340816
768146021
15382869
16025403
10_1021_es049885v
ark_67375_TPS_8MH3NLBH_J
e82509325
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Netherlands
Europe
GroupedDBID -
.K2
186
1AW
3R3
4.4
42X
4R4
53G
55A
5GY
5VS
63O
7~N
85S
A
AABXI
ABDEX
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AETEA
AFEFF
AFMIJ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MS
NHB
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VOH
VQA
W1F
WH7
X
XFK
XZL
YZZ
ZCG
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
MS~
MW2
UBC
XSW
YV5
ZCA
~A~
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
.HR
1WB
8WZ
A6W
ABHMW
ACKIV
IQODW
MVM
OHT
RNS
TAE
UBX
UBY
VJK
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7TV
7X8
08R
ACDCL
ADKFC
AFDAS
HR
QVL
ID FETCH-LOGICAL-a640t-adc556d3da55c32a6d76852f9fddd8c3f4c7988dc3e31684a00dddfe8660cc93
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Tue Jan 05 18:04:15 EST 2021
Mon Jul 21 09:36:47 EDT 2025
Fri Jul 11 07:57:47 EDT 2025
Fri Jul 11 15:40:17 EDT 2025
Fri Jul 11 11:25:27 EDT 2025
Fri Jul 25 03:52:44 EDT 2025
Wed Feb 19 02:35:09 EST 2025
Mon Jul 21 09:16:40 EDT 2025
Tue Jul 01 03:25:55 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Wed Oct 30 09:20:56 EDT 2024
Thu Aug 27 13:42:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Cadmium
Complexation
Organic matter
Pollutant behavior
Mobility
Surface complexation model
Soil pollution
Leaching
Zinc
Heavy metal
Dissolved matter
Transport process
Sorption
Lead
Soil interaction
Nickel
Copper
Speciation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a640t-adc556d3da55c32a6d76852f9fddd8c3f4c7988dc3e31684a00dddfe8660cc93
Notes istex:1EDFAECE7628DA69FB7625A1C4B9913571B02C2F
ark:/67375/TPS-8MH3NLBH-J
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15382869
PQID 230132572
PQPubID 23462
PageCount 6
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_340816
proquest_miscellaneous_754707512
proquest_miscellaneous_66898220
proquest_miscellaneous_16180095
proquest_miscellaneous_14706220
proquest_journals_230132572
pubmed_primary_15382869
pascalfrancis_primary_16025403
crossref_citationtrail_10_1021_es049885v
crossref_primary_10_1021_es049885v
istex_primary_ark_67375_TPS_8MH3NLBH_J
acs_journals_10_1021_es049885v
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate 2004-08-15
PublicationDateYYYYMMDD 2004-08-15
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Tipping E. (es049885vb00006/es049885vb00006_1) 2003; 125
Voegelin A. (es049885vb00009/es049885vb00009_1) 2001; 35
Sloot (es049885vb00012/es049885vb00012_1) 1996; 178
Temminghoff E. J. M. (es049885vb00005/es049885vb00005_1) 1997; 31
Boekhold A. E. (es049885vb00023/es049885vb00023_1) 1993; 44
de Wit J. C. M. Ph.D. (es049885vb00032/es049885vb00032_1) 1992
Lord C. J. Ph.D. (es049885vb00016/es049885vb00016_1) 1980
Ferdelman T. G. M.Sc. (es049885vb00019/es049885vb00019_1) 1988
Thurman E. M. (es049885vb00014/es049885vb00014_1) 1981; 15
Canfield D. E. Ph.D. (es049885vb00017/es049885vb00017_1) 1988
es049885vb00037/es049885vb00037_1
Gooddy D. C. (es049885vb00022/es049885vb00022_1) 1995; 46
Kosson D. S. (es049885vb00011/es049885vb00011_1) 2002; 19
Allison J. D. (es049885vb00025/es049885vb00025_1) 1991
Blakemore L. C. (es049885vb00020/es049885vb00020_1) 1987
Meima J. A. (es049885vb00013/es049885vb00013_1) 1997; 31
Lofts S. (es049885vb00010/es049885vb00010_1) 1998; 62
Benedetti M. F. (es049885vb00026/es049885vb00026_1) 1995; 29
Meima J. A. (es049885vb00034/es049885vb00034_1) 1998; 32
Dzombak D. A. (es049885vb00033/es049885vb00033_1) 1990
McBride M. B. (es049885vb00036/es049885vb00036_1) 1994
es049885vb00043/es049885vb00043_1
Sauve S. (es049885vb00002/es049885vb00002_1) 2000; 34
Weng L. (es049885vb00004/es049885vb00004_1) 2001; 35
Kostka J. E. (es049885vb00018/es049885vb00018_1) 1994; 58
Zhu C. (es049885vb00038/es049885vb00038_1) 2002; 188
Dijkstra J. J. (es049885vb00029/es049885vb00029_1) 2002; 22
McBride M. B. (es049885vb00001/es049885vb00001_1) 1997; 48
Lumsdon D. G. (es049885vb00041/es049885vb00041_1) 2004; 55
es049885vb00042/es049885vb00042_1
Meeussen J. C. L. (es049885vb00024/es049885vb00024_1) 2003; 37
Gustafson J. P. (es049885vb00008/es049885vb00008_1) 2003; 37
Cances B. (es049885vb00007/es049885vb00007_1) 2003; 113
Kinniburgh D. G. (es049885vb00027/es049885vb00027_1) 1996; 30
Houba V. J. G. (es049885vb00021/es049885vb00021_1) 1989
Buffle J. (es049885vb00039/es049885vb00039_1) 1988
Milne C. J. (es049885vb00030/es049885vb00030_1) 2001; 35
Kinniburgh D. G. (es049885vb00028/es049885vb00028_1) 1999; 151
Filius J. D. (es049885vb00040/es049885vb00040_1) 2003; 67
Milne C. J. (es049885vb00031/es049885vb00031_1) 2003; 37
Weng L. (es049885vb00003/es049885vb00003_1) 2002; 36
Hiemstra T. (es049885vb00035/es049885vb00035_1) 1989; 133
References_xml – volume: 31
  start-page: 1115
  year: 1997
  ident: es049885vb00005/es049885vb00005_1
  publication-title: Environ. Sci. Technol.
– volume-title: Surface complexation model ing:  hydrous ferric oxide
  year: 1990
  ident: es049885vb00033/es049885vb00033_1
– volume: 62
  start-page: 2625
  year: 1998
  ident: es049885vb00010/es049885vb00010_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00183-5
– volume: 44
  start-page: 96
  year: 1993
  ident: es049885vb00023/es049885vb00023_1
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1993.tb00436.x
– volume: 55
  start-page: 285
  year: 2004
  ident: es049885vb00041/es049885vb00041_1
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2004.00599.x
– volume: 31
  start-page: 1276
  year: 1997
  ident: es049885vb00013/es049885vb00013_1
  publication-title: J. Environ. Sci. Technol.
  doi: 10.1021/es9603158
– volume-title: University of Delaware
  year: 1988
  ident: es049885vb00019/es049885vb00019_1
– volume-title: Geochemical assessment model for environmental systems:  version 3.11 databases and version 3.0 user's manual
  year: 1991
  ident: es049885vb00025/es049885vb00025_1
– volume-title: Wageningen University
  year: 1992
  ident: es049885vb00032/es049885vb00032_1
– volume-title: Environmental Chemistry of Soils
  year: 1994
  ident: es049885vb00036/es049885vb00036_1
– volume: 19
  start-page: 204
  year: 2002
  ident: es049885vb00011/es049885vb00011_1
  publication-title: Chem. Eng. Sci.
– volume-title: University of Delaware
  year: 1980
  ident: es049885vb00016/es049885vb00016_1
– volume: 36
  start-page: 4810
  year: 2002
  ident: es049885vb00003/es049885vb00003_1
  publication-title: Environ. Sci. Technol.
– volume: 113
  start-page: 355
  year: 2003
  ident: es049885vb00007/es049885vb00007_1
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00369-5
– volume: 151
  start-page: 166
  year: 1999
  ident: es049885vb00028/es049885vb00028_1
  publication-title: J. Colloid Surf., A
  doi: 10.1016/S0927-7757(98)00637-2
– volume: 188
  start-page: 32
  year: 2002
  ident: es049885vb00038/es049885vb00038_1
  publication-title: Chem. Geol.
– volume: 35
  start-page: 4443
  year: 2001
  ident: es049885vb00004/es049885vb00004_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010085j
– volume-title: A series of syllabi:  Part 5. Soil Analysis Procedures
  year: 1989
  ident: es049885vb00021/es049885vb00021_1
– volume: 37
  start-page: 2774
  year: 2003
  ident: es049885vb00008/es049885vb00008_1
  publication-title: Environ. Sci. Technol.
– volume: 32
  start-page: 693
  year: 1998
  ident: es049885vb00034/es049885vb00034_1
  publication-title: J. Environ. Sci. Technol.
  doi: 10.1021/es9701624
– volume: 133
  start-page: 117
  year: 1989
  ident: es049885vb00035/es049885vb00035_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(89)90285-3
– volume-title: Complexation reactions in aquatic systems
  year: 1988
  ident: es049885vb00039/es049885vb00039_1
– volume: 35
  start-page: 2059
  year: 2001
  ident: es049885vb00030/es049885vb00030_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000123j
– volume: 67
  start-page: 1474
  year: 2003
  ident: es049885vb00040/es049885vb00040_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(02)01042-6
– volume: 48
  start-page: 346
  year: 1997
  ident: es049885vb00001/es049885vb00001_1
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1997.tb00554.x
– volume: 29
  start-page: 457
  year: 1995
  ident: es049885vb00026/es049885vb00026_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00002a022
– ident: es049885vb00043/es049885vb00043_1
– volume: 30
  start-page: 1698
  year: 1996
  ident: es049885vb00027/es049885vb00027_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950695h
– volume: 37
  start-page: 971
  year: 2003
  ident: es049885vb00031/es049885vb00031_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0258879
– ident: es049885vb00037/es049885vb00037_1
– volume: 35
  start-page: 1657
  year: 2001
  ident: es049885vb00009/es049885vb00009_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0001106
– volume: 22
  start-page: 541
  year: 2002
  ident: es049885vb00029/es049885vb00029_1
  publication-title: J. Waste Manage.
  doi: 10.1016/S0956-053X(01)00034-4
– ident: es049885vb00042/es049885vb00042_1
– volume: 15
  start-page: 466
  year: 1981
  ident: es049885vb00014/es049885vb00014_1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00086a012
– volume: 125
  start-page: 225
  year: 2003
  ident: es049885vb00006/es049885vb00006_1
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(03)00058-7
– volume: 58
  start-page: 1710
  year: 1994
  ident: es049885vb00018/es049885vb00018_1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90531-2
– volume: 34
  start-page: 1131
  year: 2000
  ident: es049885vb00002/es049885vb00002_1
  publication-title: Environ. Sci. Technol.
– volume: 178
  start-page: 126
  year: 1996
  ident: es049885vb00012/es049885vb00012_1
  publication-title: Sci. Total Environ.
– volume-title: Yale University
  year: 1988
  ident: es049885vb00017/es049885vb00017_1
– volume: 46
  start-page: 285
  year: 1995
  ident: es049885vb00022/es049885vb00022_1
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1995.tb01835.x
– volume: 37
  start-page: 1182
  year: 2003
  ident: es049885vb00024/es049885vb00024_1
  publication-title: Environ. Sci. Technol.
– volume-title: Methods for chemical analysis of soils
  year: 1987
  ident: es049885vb00020/es049885vb00020_1
SSID ssj0002308
Score 2.3074086
Snippet In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4−12) using an...
In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an...
The leaching behavior of nickel, copper, zinc, cadmium, and lead from eight different contaminated soils was studied over a wide range of pH values using an...
SourceID wageningen
proquest
pubmed
pascalfrancis
crossref
istex
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4390
SubjectTerms Applied sciences
Biological and physicochemical properties of pollutants. Interaction in the soil
Contaminated sediments
dissolved organic-matter
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Heavy metal content
Heavy metals
humic substances
Hydrogen-Ion Concentration
incinerator bottom ash
ion-binding
Leaching
Metals
Metals, Heavy - analysis
Metals, Heavy - chemistry
Models, Theoretical
nica-donnan model
Pollution
Pollution, environment geology
sandy soil
Soil and sediments pollution
Soil contamination
Soil Pollutants - analysis
Soil sciences
Solubility
solubility control
sorption
speciation
waste
Water
Title Leaching of Heavy Metals from Contaminated Soils:  An Experimental and Modeling Study
URI http://dx.doi.org/10.1021/es049885v
https://api.istex.fr/ark:/67375/TPS-8MH3NLBH-J/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15382869
https://www.proquest.com/docview/230132572
https://www.proquest.com/docview/14706220
https://www.proquest.com/docview/16180095
https://www.proquest.com/docview/66898220
https://www.proquest.com/docview/754707512
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F340816
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9MwFLbGdtkO_BgMwmBYgBCXbE4cOy63MTpV0zohtYjeLMeOJbQqRU27MU5c-Tf5S3ivSdNOtOOUg784sf2e_Wy_9z1C3lrFOE8zFzKR42kVE6HKhA1lplKeR8yIWbq37oXsfEnOBmKwQd6sucGPo6O8BCNWKXF1j2zFEpQX7Z-TXjPdgg2t5mkKWlwO5vRBy6_i0mPLW0vPFvbiD3SFNCX0hq_SWKyyM3fI9jXodjELdlpafE4fkE_zEJ7K5-TycDrJDu3Pfxkd72rXQ3K_Nj7pcSUtj8hGXuySnSVKwl2y115EvgG0Vv3yMfl6Xvtd0pGnndxc3dBuDpCSYoQKRZYrg241YMHS3ujbsPzw59dvelzQ9lIOAWoKRzH9GgbBU_RhvHlC-qft_kknrLMyhEYmbBIaZ4WQjjsjhOWxkQ52LCL2Le-cU5b7xCIHmrN4vCpVYhiDAp8rKZm1Lb5HNotRkT8j1EcuTWHCSKMMdkE2ymC-8UnkvcfwXpkE5ABGTddKVerZfXkc6abnAvJ-PqDa1pTmmFljuAr6uoF-r3g8VoHezaSiQZjxJTq-pUL3P_e06nb4xfnHjj6DP7slNosqJbILMB6Q_bkcLf4fJBX2_iKNA_KqKQVtxisaU-SjKTQxSZmMY3YHQkYK7eL1CCkVkjJCHXQNIhXwmRRMvYA8rWR80QBYAGMlWwHhC6HXBea1KjVSkdeHi_p6OtbFEB9QQ6l5ghlcnv9vxPbJduX6pMJIvCCbk_E0fwlW3SQ7mGn1X4atSHw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgO7Ad-DEYhMFmIYS4ZDhx7LjcytQpjLZCahG9WY6TSGhVipp2Y5y48m_yl_BekiYd6oBTDn5xbOf5-dl-7_sIeWkV4zyME5eJFE-rmHBVLKwrYxXy1GNGlHRvg6GMPgVnEzGpYXIwFwYaUUBNRXmJ36ILeG_SAnxZpcTFbbINToiP2tw9GTVWF1xptWIr6HA5WaEIrb-KK5Atrq1A2ziY3zAi0hQwKFnFZrHJ3dwlO5cwxfMy52ltDTq9V5EZla0vQ0_Oj5eL-Nh-_wPY8f-6d5_crV1R2q105wG5leZ7ZHcNoHCP7PfaPDgQrQ1B8ZB87tdRmHSW0Sg1F1d0kIJIQTFfhSLmlcEgG_Bn6Wj2ZVq8_fXjJ-3mtLfGKEBNnlAkY8OUeIoRjVePyPi0Nz6J3JqjwTUyYAvXJFYImfDECGG5b2QC-xfhZ50sSRJleRZYRERLLB62ShUYxqAgS5WUzNoO3ydb-SxPnxCaeUkYgvkIvRj2RNaLwfpkgZdlGSb7ysAhhzBwup5ihS5vz31PNyPnkNer_6ptDXCOPBvTTaIvGtGvFarHJqFXpXI0EmZ-jmFwodDjjyOtBhEf9t9F-gxadk172iolYg0w7pCDlTq17QeF9TgYTN8hR00pzG28sDF5OltCF4OQSd9nf5GQnkIv-WYJKRVCNEId9AaJUMBnQnD8HPK4UvW2A7Ac-kp2HMJb3dc5slwVGoHJ66NGfbmc63yKD9RwzQPkc3n6rz92RO5E40Ff998PPxyQnSooSrmeeEa2FvNl-hz8vUV8WE7032WSUN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgk9D2wI_BIAw2CyHES0YSx47LWxmtymjLpBbRN8uxYwmtSqem3RhPvPJv8pdwl6ZphzbgqQ_54trO3fls331HyEsjA8aS1PoBz_C0KuC-TLnxRSoTloWB5mW5t15fdD7HxyM-qjaKmAsDnSigpaK8xEetPrOuYhgI32QF-LNS8vPbZBOv61Cim0eD2vKCOy2XFQsaTIyWTELrr-IqZIorq9AmTug3jIrUBUyMW1S0uM7l3CZbF6DmeZn3tLYOte-RT_UIyvCT08P5LD003_8gd_z_Id4ndyuXlDYXMvSA3MryHbK9RlS4Q3Zbq3w4gFYGoXhIvnSraEw6cbST6fNL2ssAUlDMW6HIfaUx2Ab8WjqYfB0Xb3_9-EmbOW2tVRagOrcUi7JhajzFyMbLR2TYbg2POn5Vq8HXIg5mvraGc2GZ1ZwbFmlhYR_DI9dw1lppmIsNMqNZg4euQsY6COCBy6QQgTENtks28kmePSHUhTZJwIwkYQp7IxOmYIVcHDrnMOlXxB7Zh8lTlaoVqrxFj0JVz5xHXi-_rTIV0TnW2xhfB31RQ88W7B7XgV6VAlIj9PQUw-ESroYnAyV7HdbvvuuoY-jZFQlaNSmQcyBgHtlbitSq_yC0IQPDGXnkoH4KOo4XNzrPJnMYYpwEIoqCvyBEKNFbvhkhhESqRmiD3oBIOPxNAg6gRx4vxH01AFgWIykaHmEr-Vc5VrsqFBKUV0eO6mI-VfkYf1DKFYuxrsvTf32xA3Ln5H1bdT_0P-6RrUVslPRD_oxszKbz7Dm4fbN0v9T13wlCU2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaching+of+Heavy+Metals+from+Contaminated+Soils%3A+An+Experimental+and+Modeling+Study&rft.jtitle=Environmental+science+%26+technology&rft.au=Dijkstra%2C+J+J&rft.au=Meeussen%2C+JCL&rft.au=Comans%2C+RNJ&rft.date=2004-08-15&rft.issn=0013-936X&rft.volume=38&rft.issue=16&rft.spage=4390&rft.epage=4395&rft_id=info:doi/10.1021%2Fes049885v&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon