Sparse Iterative Closest Point
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point co...
Saved in:
Published in | Computer graphics forum Vol. 32; no. 5; pp. 113 - 123 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp. |
---|---|
AbstractList | Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp. Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp . Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp. [PUBLICATION ABSTRACT] |
Author | Pauly, Mark Tagliasacchi, Andrea Bouaziz, Sofien |
Author_xml | – sequence: 1 givenname: Sofien surname: Bouaziz fullname: Bouaziz, Sofien organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland – sequence: 2 givenname: Andrea surname: Tagliasacchi fullname: Tagliasacchi, Andrea organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland – sequence: 3 givenname: Mark surname: Pauly fullname: Pauly, Mark organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland |
BookMark | eNp1kMFPwjAUxhuDiYAe_AcMiRc9DPrWtd2OZhFEiWLAeGy60ZrhWLEdKv-9RdAD0V5eD7_ve9_7WqhRmUohdAq4C_718hfdhRB4fICaEDEexIwmDdTE4P8cU3qEWs7NMcYRZ7SJziZLaZ3qDGtlZV28q05aGqdc3RmboqqP0aGWpVMnu9lGT_3raXoTjB4Gw_RqFEhGojigPIcojAnMMKM6yxnRMego0RFkUjKqlNQZhZArH4dksUwyPcPJjAFIwISQNrrY-i6teVv59WJRuFyVpayUWTnh00PEgYYb9HwPnZuVrXw64TMwCBn2lm3U21K5Nc5ZpUVe1P5AU9VWFqUALDZ9Cd-X-O7LKy73FEtbLKRd_8nu3D-KUq3_B0U66P8ogq2icLX6_FVI-yoYJ5yK5_uBuJtOHkf4dirG5AtZUYgZ |
CitedBy_id | crossref_primary_10_3390_app13053096 crossref_primary_10_1109_TASE_2016_2640228 crossref_primary_10_3390_app122010247 crossref_primary_10_1109_TPAMI_2023_3247603 crossref_primary_10_1016_j_jneumeth_2015_09_008 crossref_primary_10_1088_1361_6501_acc7be crossref_primary_10_1162_PRES_a_00303 crossref_primary_10_3390_ijgi9100570 crossref_primary_10_1007_s00138_024_01517_3 crossref_primary_10_53759_9852_JRS202301015 crossref_primary_10_1109_TGRS_2023_3307061 crossref_primary_10_3390_rs13193936 crossref_primary_10_1111_cgf_14614 crossref_primary_10_3390_s20236999 crossref_primary_10_1007_s00530_023_01190_y crossref_primary_10_1029_2019JB018739 crossref_primary_10_1007_s00371_019_01670_1 crossref_primary_10_1109_TASE_2022_3159553 crossref_primary_10_1109_LRA_2020_2970946 crossref_primary_10_1145_3386569_3392465 crossref_primary_10_1016_j_patrec_2024_08_001 crossref_primary_10_1145_3272127_3275096 crossref_primary_10_1109_TVCG_2023_3247169 crossref_primary_10_1109_TPAMI_2020_2978477 crossref_primary_10_3169_mta_6_151 crossref_primary_10_1109_TGRS_2023_3278769 crossref_primary_10_1007_s00371_016_1326_9 crossref_primary_10_1007_s11548_023_02842_0 crossref_primary_10_1016_j_isprsjprs_2022_01_019 crossref_primary_10_1109_TGRS_2021_3091380 crossref_primary_10_1145_2602142 crossref_primary_10_1360_SST_2020_0500 crossref_primary_10_1007_s41095_015_0019_z crossref_primary_10_1109_JSTARS_2022_3192264 crossref_primary_10_1007_s00371_023_03209_x crossref_primary_10_2493_jjspe_89_77 crossref_primary_10_1371_journal_pone_0296704 crossref_primary_10_3390_s18124280 crossref_primary_10_1364_OE_503372 crossref_primary_10_1016_j_jvcir_2017_03_012 crossref_primary_10_1111_cgf_14715 crossref_primary_10_1088_1361_6501_ac99f2 crossref_primary_10_3390_f15060893 crossref_primary_10_1109_TIM_2023_3309384 crossref_primary_10_3390_app12147023 crossref_primary_10_1155_2022_4351951 crossref_primary_10_3390_rs14132986 crossref_primary_10_1109_ACCESS_2018_2873903 crossref_primary_10_1117_1_JEI_27_2_023019 crossref_primary_10_1007_s10489_021_03055_1 crossref_primary_10_1109_TGRS_2024_3488502 crossref_primary_10_1111_cgf_14721 crossref_primary_10_1109_TGRS_2020_2982221 crossref_primary_10_3390_jmse11040840 crossref_primary_10_1364_AO_58_00A242 crossref_primary_10_3390_rs15133375 crossref_primary_10_1016_j_isprsjprs_2021_03_003 crossref_primary_10_1109_TGRS_2019_2926201 crossref_primary_10_1016_j_cagd_2023_102178 crossref_primary_10_3390_en15218068 crossref_primary_10_3390_mi13101577 crossref_primary_10_1016_j_patrec_2016_06_007 crossref_primary_10_1145_3687968 crossref_primary_10_1177_0278364919842324 crossref_primary_10_1080_10095020_2023_2175478 crossref_primary_10_3390_buildings12101754 crossref_primary_10_1109_ACCESS_2024_3462756 crossref_primary_10_1109_JSTARS_2024_3365516 crossref_primary_10_1016_j_autcon_2021_104096 crossref_primary_10_3390_s23063085 crossref_primary_10_1364_AO_469060 crossref_primary_10_3390_rs15143545 crossref_primary_10_1007_s10851_021_01042_2 crossref_primary_10_1061__ASCE_CP_1943_5487_0000959 crossref_primary_10_1109_TMRB_2023_3265708 crossref_primary_10_1111_phor_12497 crossref_primary_10_3390_rs15184493 crossref_primary_10_1016_j_neucom_2022_07_082 crossref_primary_10_1049_htl2_70001 crossref_primary_10_1080_16864360_2017_1397889 crossref_primary_10_1088_1361_6501_aa8214 crossref_primary_10_1088_1361_6501_ad5de2 crossref_primary_10_1109_TGRS_2024_3496198 crossref_primary_10_1007_s11548_019_02005_0 crossref_primary_10_1109_LRA_2021_3097268 crossref_primary_10_1109_TVCG_2015_2505287 crossref_primary_10_1109_TVCG_2018_2832136 crossref_primary_10_1109_ACCESS_2020_3027205 crossref_primary_10_1007_s10489_023_05263_3 crossref_primary_10_1038_s41467_024_45861_4 crossref_primary_10_1109_TPAMI_2015_2513405 crossref_primary_10_1007_s00371_023_03195_0 crossref_primary_10_1109_TGRS_2022_3171625 crossref_primary_10_1186_s12903_024_04565_3 crossref_primary_10_1109_ACCESS_2022_3202223 crossref_primary_10_1109_TPAMI_2023_3262780 crossref_primary_10_1016_j_cviu_2019_03_008 crossref_primary_10_1109_TCSVT_2021_3062811 crossref_primary_10_1109_LRA_2023_3254859 crossref_primary_10_1145_3355089_3356491 crossref_primary_10_1016_j_promfg_2020_01_163 crossref_primary_10_1145_3306346_3323037 crossref_primary_10_1002_rob_21904 crossref_primary_10_1007_s11704_016_6191_1 crossref_primary_10_3390_s22082887 crossref_primary_10_1016_j_isprsjprs_2015_08_007 crossref_primary_10_1145_3182157 crossref_primary_10_1007_s10044_024_01351_3 crossref_primary_10_1109_TMI_2020_3007520 crossref_primary_10_1016_j_compind_2014_11_002 crossref_primary_10_1142_S0219467817500061 crossref_primary_10_3390_s20185331 crossref_primary_10_1109_TCBB_2018_2824814 crossref_primary_10_1016_j_aei_2025_103120 crossref_primary_10_1109_TMM_2021_3089838 crossref_primary_10_1109_TCI_2021_3060915 crossref_primary_10_3390_rs16050743 crossref_primary_10_1109_ACCESS_2023_3279503 crossref_primary_10_1007_s10489_022_03201_3 crossref_primary_10_1145_2601097_2601191 crossref_primary_10_1109_ACCESS_2021_3121390 crossref_primary_10_1109_TGRS_2023_3317822 crossref_primary_10_1016_j_compeleceng_2016_07_003 crossref_primary_10_1038_srep39834 crossref_primary_10_3390_s21175778 crossref_primary_10_1017_S0263574724000845 crossref_primary_10_1109_TIM_2017_2784039 crossref_primary_10_1115_1_4037477 crossref_primary_10_1108_AA_09_2020_0130 crossref_primary_10_1109_TASE_2018_2802725 crossref_primary_10_1007_s13218_019_00593_2 crossref_primary_10_3390_rs15123054 crossref_primary_10_1016_j_vrih_2022_09_001 crossref_primary_10_1109_TGRS_2020_3045456 crossref_primary_10_1016_j_jvcir_2015_08_007 crossref_primary_10_1111_cgf_12700 crossref_primary_10_1109_TII_2024_3507942 crossref_primary_10_1016_j_buildenv_2021_108675 crossref_primary_10_3390_rs13163210 crossref_primary_10_3390_s21217023 crossref_primary_10_1109_ACCESS_2018_2830819 crossref_primary_10_1177_02783649241301443 crossref_primary_10_3724_SP_J_1089_2022_18823 crossref_primary_10_1109_LRA_2018_2885579 crossref_primary_10_1109_TIP_2022_3231132 crossref_primary_10_1109_TPAMI_2021_3054619 crossref_primary_10_1364_OE_518556 crossref_primary_10_1109_TIM_2024_3470951 crossref_primary_10_1109_LRA_2024_3430132 crossref_primary_10_1109_TCSVT_2024_3379220 crossref_primary_10_1145_3306346_3322942 crossref_primary_10_1016_j_compeleceng_2022_108098 crossref_primary_10_1029_2018GL080858 crossref_primary_10_1109_TIP_2020_3019649 crossref_primary_10_1109_TPAMI_2023_3244951 crossref_primary_10_1109_LSP_2025_3535221 crossref_primary_10_1109_TIM_2025_3529536 crossref_primary_10_1109_TPAMI_2024_3355198 crossref_primary_10_1145_3528223_3530175 crossref_primary_10_3390_rs13234755 crossref_primary_10_1016_j_compag_2024_109435 crossref_primary_10_1145_3386569_3392419 crossref_primary_10_1016_j_engappai_2017_09_017 crossref_primary_10_1080_15481603_2023_2197281 crossref_primary_10_1109_ACCESS_2023_3280639 crossref_primary_10_3390_rs15123185 crossref_primary_10_1007_s11548_024_03129_8 crossref_primary_10_1109_TVCG_2023_3280171 crossref_primary_10_1109_ACCESS_2025_3535151 crossref_primary_10_1111_cgf_13599 crossref_primary_10_1016_j_isprsjprs_2021_08_011 crossref_primary_10_1109_TIP_2019_2909197 crossref_primary_10_1007_s00170_018_2173_9 crossref_primary_10_1016_j_cagd_2015_03_022 crossref_primary_10_1080_16864360_2018_1486962 crossref_primary_10_1109_LRA_2022_3171068 crossref_primary_10_1109_TGRS_2021_3112589 crossref_primary_10_1109_TIFS_2018_2889255 crossref_primary_10_1016_j_cag_2016_05_007 crossref_primary_10_1016_j_cad_2022_103459 crossref_primary_10_1109_LRA_2022_3214056 crossref_primary_10_1109_LRA_2023_3239312 crossref_primary_10_1109_ACCESS_2024_3407341 crossref_primary_10_1109_TIP_2016_2636661 crossref_primary_10_1016_j_isprsjprs_2022_04_024 crossref_primary_10_1016_j_neucom_2022_08_047 crossref_primary_10_1007_s10514_020_09948_3 crossref_primary_10_1109_LRA_2021_3093868 crossref_primary_10_1109_TRO_2023_3335691 crossref_primary_10_3390_drones5010007 crossref_primary_10_3390_s150101435 crossref_primary_10_1109_TASE_2018_2861618 crossref_primary_10_1007_s11075_016_0170_3 crossref_primary_10_1364_AO_505234 crossref_primary_10_3390_rs14112559 crossref_primary_10_1109_TVCG_2021_3086113 crossref_primary_10_1126_sciadv_aax5703 crossref_primary_10_1109_TIP_2022_3223793 crossref_primary_10_1109_TIV_2017_2654065 crossref_primary_10_1007_s10589_015_9819_4 crossref_primary_10_1016_j_media_2017_02_005 crossref_primary_10_1109_TIP_2017_2695888 crossref_primary_10_1111_cgf_12699 crossref_primary_10_1111_cgf_12698 crossref_primary_10_1109_TITS_2022_3200938 crossref_primary_10_18178_ijmlc_2016_6_3_592 crossref_primary_10_1109_TMM_2024_3368913 crossref_primary_10_1109_LRA_2020_2965893 crossref_primary_10_3390_s21217177 crossref_primary_10_1007_s10915_018_0757_z crossref_primary_10_3169_mta_7_148 crossref_primary_10_1007_s00170_020_06148_2 crossref_primary_10_1109_LRA_2024_3376157 crossref_primary_10_1145_2661229_2661263 crossref_primary_10_3390_app14135507 crossref_primary_10_1007_s11263_021_01439_x crossref_primary_10_1109_ACCESS_2023_3314188 crossref_primary_10_1145_3009905 crossref_primary_10_1109_TIM_2021_3126380 crossref_primary_10_1002_rob_22032 crossref_primary_10_1109_TGRS_2016_2639025 crossref_primary_10_1007_s10439_015_1446_9 crossref_primary_10_1109_TITS_2023_3268273 crossref_primary_10_1109_TVCG_2022_3193018 crossref_primary_10_11648_j_ajtas_20241306_12 crossref_primary_10_1111_cgf_14081 crossref_primary_10_1007_s00006_018_0864_9 crossref_primary_10_1016_j_optlastec_2023_109328 crossref_primary_10_1007_s00530_024_01369_x crossref_primary_10_1109_TVCG_2022_3157061 crossref_primary_10_1111_cgf_142637 crossref_primary_10_3169_mta_12_175 crossref_primary_10_3724_2097_3063_20240016 crossref_primary_10_1111_cgf_13798 crossref_primary_10_3390_rs15245641 crossref_primary_10_1142_S0219467817500218 crossref_primary_10_1109_TRO_2021_3123898 crossref_primary_10_1063_5_0101128 crossref_primary_10_3390_rs13081540 crossref_primary_10_1145_3072959_3073635 |
Cites_doi | 10.1109/CVPR.2012.6247673 10.1109/LSP.2007.898300 10.1006/cviu.1995.1024 10.1016/S1077-3142(03)00009-2 10.1145/2010324.1964972 10.1016/j.cagd.2009.09.001 10.1007/978-3-662-05105-4_12 10.1016/j.cviu.2004.04.002 10.1007/s11263-006-5167-2 10.1109/TPAMI.2010.223 10.1145/1057432.1057435 10.1109/TSP.2012.2212015 10.1109/70.210797 10.1109/ICASSP.2008.4518498 10.1016/j.imavis.2003.09.004 10.15607/RSS.2009.V.021 10.1016/j.imavis.2004.05.007 10.1016/j.cad.2004.02.009 10.1016/S0167-8655(99)00055-0 10.1109/MSP.2007.914731 10.1109/TIT.2005.862083 10.1007/s001380050048 10.1109/34.121791 10.1561/2200000016 10.1007/978-3-540-24672-5_44 10.1007/BF01427149 10.1109/TSP.2010.2044837 10.1145/355744.355745 10.1145/1360612.1360684 10.1017/CBO9780511804441 10.1111/j.1467-8659.2011.01884.x 10.1561/2200000015 10.1109/ICASSP.2013.6638818 |
ContentType | Journal Article |
Copyright | 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12178 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1467-8659 |
EndPage | 123 |
ExternalDocumentID | 3048788661 10_1111_cgf_12178 CGF12178 ark_67375_WNG_KTSQL0JT_P |
Genre | article Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHQJS AIDQK AIDYY ALVPJ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-a6348-57c142831d065fbc63f81f49f41baa65eeafb5127e8653b8a9bfd09d611a10333 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Tue Aug 05 11:05:10 EDT 2025 Fri Jul 25 23:47:06 EDT 2025 Tue Jul 01 02:23:03 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Wed Aug 20 07:26:23 EDT 2025 Wed Oct 30 09:48:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a6348-57c142831d065fbc63f81f49f41baa65eeafb5127e8653b8a9bfd09d611a10333 |
Notes | ArticleID:CGF12178 istex:5E4926C92B16744B19A457FF54AFEAC7A5D3FFAA ark:/67375/WNG-KTSQL0JT-P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1426126010 |
PQPubID | 30877 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1671471523 proquest_journals_1426126010 crossref_citationtrail_10_1111_cgf_12178 crossref_primary_10_1111_cgf_12178 wiley_primary_10_1111_cgf_12178_CGF12178 istex_primary_ark_67375_WNG_KTSQL0JT_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Friedman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (1977), 209-226. 3, 4. Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understanding 89, 2-3 (2003), 114-141. 9. Chartrand R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14, 10 (2007), 707-710. 4, 5. Boyd S., Vandenberghe L.: Convex optimization. Cambridge University Press, 2004. 11. Bach F. R., Jenatton R., Mairal J., Obozinski G.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4, 1 (2012), 1-106. 2, 4. Eggert D. W., Lorusso A., Fisher R. B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9 (1997), 272-290. 2, 3, 4. Mirza M., Boyer K.: Performance evaluation of a class of m-estimators for surface parameter estimation in noisy range data. IEEE Transactions on Robotics and Automation 9 (1993), 75-85. 6, 8. Pottmann H., Huang Q.-X., Yang Y.-L., Hu S.-M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision 67, 3 (2006), 277-296. 3, 6, 8. Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 11. Fitzgibbon A. W.: Robust registration of 2d and 3d point sets. Image Vision Comput. 21 (2003), 1145-1153. 3. Besl P., McKay H.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239-256. 2, 3, 4. Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Computer Aided Geometric Design 27, 1 (2010), 60-77. 4, 6, 7. Trucco E., Fusiello A., Roberto V.: Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recognition Letters 20, 9 (1999), 889-898. 3. Aiger D., Mitra N. J., Cohen-Or D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27, 3 (2008), 85:1-85:10. 2, 3. Masuda T., Yokoya N.: A robust method for registration and segmentation of multiple range images. Computer Vision and Image Understanding 61, 3 (1995), 295-307. 3. Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681-1707. 3. Li Y., Gu P.: Free-form surface inspection techniques state of the art review. Computer-Aided Design 36, 13 (2004), 1395-1417. 2. Candès E. J., Wakin M. B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 2 (2008). 2. Jian B., Vemuri B.: Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1633-1645. 3. Nocedal J., Wright S. J.: Numerical optimization. Springer Verlag, 2006. 11. Pottmann H., Leopoldseder S., Hofer M.: Registration without ICP. Computer Vision and Image Understanding 95, 1 (2004), 54-71. 3. Marjanovic G., Solo V.: On ℓq optimization and matrix completion. IEEE Trans. Signal Process. 60, 11 (2012), 5714-5724. 2, 4, 5, 11. Chetverikov D., Stepanov D., Krsek P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23 (2005), 299-309. 8, 9. Eldar Y. C., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 6 (2010), 3042-3054. 5. Weise T., Bouaziz S., Li H., Pauly M.: Realtime performance-based facial animation. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 77. 2. Banerjee A., K A.: Metric Space & Complex Analysis. New Age International (P) Limited, 2008. 5. Rusinkiewicz S.: Derivation of point to plane minimization, 2013. http://www.cs.princeton.edu/~smr/papers/icpstability.pdf. 7. Zhang Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13, 2 (1994), 119-152. 3. Candès E. J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 2 (2006), 489-509. 4. 2012; 60 1993; 9 2006; 52 2010; 58 2012 2011 2009 2008 2011; 30 2011; 33 2006 2005 1999; 20 2004 1992; 14 1992 2003 1991 2002 2011; 3 2012; 99 1997; 9 2007; 14 2005; 23 1999 1995; 61 2010; 27 2004; 95 2006; 67 2001 2004; 36 2008; 27 2008; 25 1977; 3 1994; 13 2013 2012; 4 2003; 21 2003; 89 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_23_2 e_1_2_10_20_2 Rusinkiewicz S. (e_1_2_10_42_2); 2013 e_1_2_10_43_2 e_1_2_10_21_2 e_1_2_10_41_2 e_1_2_10_40_2 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 Granger S. (e_1_2_10_24_2) 2002 Banerjee A. K A. (e_1_2_10_4_2) 2008 Nocedal J. (e_1_2_10_33_2) 2006 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_47_2 e_1_2_10_25_2 Tam G. (e_1_2_10_44_2) 2012 e_1_2_10_46_2 |
References_xml | – reference: Boyd S., Vandenberghe L.: Convex optimization. Cambridge University Press, 2004. 11. – reference: Candès E. J., Wakin M. B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 2 (2008). 2. – reference: Eldar Y. C., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 6 (2010), 3042-3054. 5. – reference: Jian B., Vemuri B.: Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1633-1645. 3. – reference: Aiger D., Mitra N. J., Cohen-Or D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27, 3 (2008), 85:1-85:10. 2, 3. – reference: Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 11. – reference: Friedman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (1977), 209-226. 3, 4. – reference: Chartrand R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14, 10 (2007), 707-710. 4, 5. – reference: Chetverikov D., Stepanov D., Krsek P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23 (2005), 299-309. 8, 9. – reference: Weise T., Bouaziz S., Li H., Pauly M.: Realtime performance-based facial animation. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 77. 2. – reference: Fitzgibbon A. W.: Robust registration of 2d and 3d point sets. Image Vision Comput. 21 (2003), 1145-1153. 3. – reference: Marjanovic G., Solo V.: On ℓq optimization and matrix completion. IEEE Trans. Signal Process. 60, 11 (2012), 5714-5724. 2, 4, 5, 11. – reference: Nocedal J., Wright S. J.: Numerical optimization. Springer Verlag, 2006. 11. – reference: Pottmann H., Leopoldseder S., Hofer M.: Registration without ICP. Computer Vision and Image Understanding 95, 1 (2004), 54-71. 3. – reference: Banerjee A., K A.: Metric Space & Complex Analysis. New Age International (P) Limited, 2008. 5. – reference: Masuda T., Yokoya N.: A robust method for registration and segmentation of multiple range images. Computer Vision and Image Understanding 61, 3 (1995), 295-307. 3. – reference: Trucco E., Fusiello A., Roberto V.: Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recognition Letters 20, 9 (1999), 889-898. 3. – reference: Rusinkiewicz S.: Derivation of point to plane minimization, 2013. http://www.cs.princeton.edu/~smr/papers/icpstability.pdf. 7. – reference: Li Y., Gu P.: Free-form surface inspection techniques state of the art review. Computer-Aided Design 36, 13 (2004), 1395-1417. 2. – reference: Pottmann H., Huang Q.-X., Yang Y.-L., Hu S.-M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision 67, 3 (2006), 277-296. 3, 6, 8. – reference: Besl P., McKay H.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239-256. 2, 3, 4. – reference: Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understanding 89, 2-3 (2003), 114-141. 9. – reference: Eggert D. W., Lorusso A., Fisher R. B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9 (1997), 272-290. 2, 3, 4. – reference: Bach F. R., Jenatton R., Mairal J., Obozinski G.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4, 1 (2012), 1-106. 2, 4. – reference: Zhang Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13, 2 (1994), 119-152. 3. – reference: Candès E. J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 2 (2006), 489-509. 4. – reference: Mirza M., Boyer K.: Performance evaluation of a class of m-estimators for surface parameter estimation in noisy range data. IEEE Transactions on Robotics and Automation 9 (1993), 75-85. 6, 8. – reference: Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681-1707. 3. – reference: Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Computer Aided Geometric Design 27, 1 (2010), 60-77. 4, 6, 7. – start-page: 3869 year: 2008 end-page: 3872 – volume: 89 start-page: 114 issue: 2–3 year: 2003 end-page: 141 article-title: A new point matching algorithm for non‐rigid registration publication-title: Comput. Vis. Image Understanding – start-page: 197 year: 2005 end-page: 206 – start-page: 160 year: 1999 end-page: 168 – start-page: 145 year: 2001 end-page: 152 – year: 2005 – volume: 21 start-page: 1145 year: 2003 end-page: 1153 article-title: Robust registration of 2d and 3d point sets publication-title: Image Vision Comput. – volume: 95 start-page: 54 issue: 1 year: 2004 end-page: 71 article-title: Registration without ICP publication-title: Computer Vision and Image Understanding – volume: 30 start-page: 1681 issue: 6 year: 2011 end-page: 1707 article-title: A survey on shape correspondence publication-title: Computer Graphics Forum – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inf. Theory – volume: 33 start-page: 1633 issue: 8 year: 2011 end-page: 1645 article-title: Robust point set registration using gaussian mixture models publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 83 year: 1992 end-page: 89 – start-page: 2724 year: 1991 end-page: 2729 – start-page: 558 year: 2004 end-page: 569 – volume: 36 start-page: 1395 issue: 13 year: 2004 end-page: 1417 article-title: Free‐form surface inspection techniques state of the art review publication-title: Computer-Aided Design – start-page: 418 year: 2002 end-page: 432 – volume: 14 start-page: 707 issue: 10 year: 2007 end-page: 710 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Processing Letters – volume: 27 start-page: 85:1 issue: 3 year: 2008 end-page: 85:10 article-title: 4‐points congruent sets for robust pairwise surface registration publication-title: ACM Trans. Graph. – volume: 13 start-page: 119 issue: 2 year: 1994 end-page: 152 article-title: Iterative point matching for registration of free‐form curves and surfaces publication-title: Int. J. Comput. Vision – volume: 23 start-page: 299 year: 2005 end-page: 309 article-title: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm publication-title: Image and Vision Computing – volume: 3 start-page: 209 issue: 3 year: 1977 end-page: 226 article-title: An algorithm for finding best matches in logarithmic expected time publication-title: ACM Transactions on Mathematical Software (TOMS) – year: 2012 – volume: 9 start-page: 272 year: 1997 end-page: 290 article-title: Estimating 3‐d rigid body transformations: a comparison of four major algorithms publication-title: Machine Vision and Applications – volume: 60 start-page: 5714 issue: 11 year: 2012 end-page: 5724 article-title: On ℓ optimization and matrix completion publication-title: IEEE Trans. Signal Process – volume: 99 start-page: 1 year: 2012 end-page: 20 – volume: 67 start-page: 277 issue: 3 year: 2006 end-page: 296 article-title: Geometry and convergence analysis of algorithms for registration of 3D shapes publication-title: International Journal of Computer Vision – year: 2008 – year: 2006 – year: 2004 – volume: 61 start-page: 295 issue: 3 year: 1995 end-page: 307 article-title: A robust method for registration and segmentation of multiple range images publication-title: Computer Vision and Image Understanding – start-page: 26 year: 2009 end-page: 27 – start-page: 222 year: 2004 end-page: 227 – volume: 9 start-page: 75 year: 1993 end-page: 85 article-title: Performance evaluation of a class of m‐estimators for surface parameter estimation in noisy range data publication-title: IEEE Transactions on Robotics and Automation – volume: 2013 publication-title: Derivation of point to plane minimization – volume: 30 issue: 4 year: 2011 end-page: 77 article-title: Realtime performance‐based facial animation publication-title: ACM Trans. Graph. (Proc. SIGGRAPH) – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends in Machine Learning – volume: 58 start-page: 3042 issue: 6 year: 2010 end-page: 3054 article-title: Block‐sparse signals: Uncertainty relations and efficient recovery publication-title: IEEE Trans. Signal Process – start-page: 459 year: 2011 end-page: 464 – volume: 14 start-page: 239 issue: 2 year: 1992 end-page: 256 article-title: A method for registration of 3D shapes publication-title: IEEE Trans. on Pattern Analysis and Machine Intelligence – volume: 20 start-page: 889 issue: 9 year: 1999 end-page: 898 article-title: Robust motion and correspondence of noisy 3‐D point sets with missing data publication-title: Pattern Recognition Letters – start-page: 22 year: 2004 end-page: 31 – start-page: 221 year: 2003 end-page: 242 – volume: 27 start-page: 60 issue: 1 year: 2010 end-page: 77 article-title: Surface fitting and registration of point clouds using approximations of the unsigned distance function publication-title: Computer Aided Geometric Design – volume: 25 issue: 2 year: 2008 article-title: An introduction to compressive sampling publication-title: IEEE Signal Process. Mag. – volume: 4 start-page: 1 issue: 1 year: 2012 end-page: 106 article-title: Optimization with sparsity‐inducing penalties publication-title: Foundations and Trends in Machine Learning – year: 2013 – ident: e_1_2_10_25_2 doi: 10.1109/CVPR.2012.6247673 – ident: e_1_2_10_23_2 – ident: e_1_2_10_9_2 doi: 10.1109/LSP.2007.898300 – ident: e_1_2_10_32_2 doi: 10.1006/cviu.1995.1024 – ident: e_1_2_10_12_2 doi: 10.1016/S1077-3142(03)00009-2 – ident: e_1_2_10_34_2 – ident: e_1_2_10_48_2 doi: 10.1145/2010324.1964972 – ident: e_1_2_10_21_2 doi: 10.1016/j.cagd.2009.09.001 – start-page: 418 volume-title: Proc. of the European Conf. on Computer Vision year: 2002 ident: e_1_2_10_24_2 – ident: e_1_2_10_36_2 doi: 10.1007/978-3-662-05105-4_12 – ident: e_1_2_10_38_2 doi: 10.1016/j.cviu.2004.04.002 – ident: e_1_2_10_37_2 doi: 10.1007/s11263-006-5167-2 – ident: e_1_2_10_26_2 doi: 10.1109/TPAMI.2010.223 – ident: e_1_2_10_11_2 – ident: e_1_2_10_30_2 doi: 10.1145/1057432.1057435 – ident: e_1_2_10_31_2 doi: 10.1109/TSP.2012.2212015 – ident: e_1_2_10_29_2 doi: 10.1109/70.210797 – volume: 2013 ident: e_1_2_10_42_2 publication-title: Derivation of point to plane minimization – ident: e_1_2_10_17_2 doi: 10.1109/ICASSP.2008.4518498 – ident: e_1_2_10_22_2 doi: 10.1016/j.imavis.2003.09.004 – ident: e_1_2_10_43_2 doi: 10.15607/RSS.2009.V.021 – ident: e_1_2_10_14_2 doi: 10.1016/j.imavis.2004.05.007 – ident: e_1_2_10_41_2 – volume-title: Metric Space & Complex Analysis year: 2008 ident: e_1_2_10_4_2 – ident: e_1_2_10_5_2 – ident: e_1_2_10_27_2 doi: 10.1016/j.cad.2004.02.009 – ident: e_1_2_10_45_2 doi: 10.1016/S0167-8655(99)00055-0 – ident: e_1_2_10_15_2 doi: 10.1109/MSP.2007.914731 – ident: e_1_2_10_13_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_10_19_2 doi: 10.1007/s001380050048 – ident: e_1_2_10_10_2 – ident: e_1_2_10_39_2 – start-page: 1 volume-title: Trans. on Visualization and Computer Graphics year: 2012 ident: e_1_2_10_44_2 – ident: e_1_2_10_28_2 – ident: e_1_2_10_6_2 doi: 10.1109/34.121791 – ident: e_1_2_10_7_2 doi: 10.1561/2200000016 – ident: e_1_2_10_35_2 – ident: e_1_2_10_46_2 doi: 10.1007/978-3-540-24672-5_44 – ident: e_1_2_10_49_2 doi: 10.1007/BF01427149 – ident: e_1_2_10_18_2 doi: 10.1109/TSP.2010.2044837 – ident: e_1_2_10_20_2 doi: 10.1145/355744.355745 – ident: e_1_2_10_2_2 doi: 10.1145/1360612.1360684 – ident: e_1_2_10_8_2 doi: 10.1017/CBO9780511804441 – volume-title: Numerical optimization year: 2006 ident: e_1_2_10_33_2 – ident: e_1_2_10_47_2 doi: 10.1111/j.1467-8659.2011.01884.x – ident: e_1_2_10_3_2 doi: 10.1561/2200000015 – ident: e_1_2_10_40_2 – ident: e_1_2_10_16_2 doi: 10.1109/ICASSP.2013.6638818 |
SSID | ssj0004765 |
Score | 2.55164 |
Snippet | Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | Algorithms and systems Computer graphics Computer science Heuristic I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems Iterative methods languages Optimization Registration Robots Studies Three dimensional Three dimensional models |
Title | Sparse Iterative Closest Point |
URI | https://api.istex.fr/ark:/67375/WNG-KTSQL0JT-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12178 https://www.proquest.com/docview/1426126010 https://www.proquest.com/docview/1671471523 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8heBkPgw2mlY8qmxDiJShu_JFoT1VHYXwJ1iJ4mBQ5iY1QqxTRVkL767lzk1AQSNPeIuWinH0-3-_s888AOzqLjNEckVuutM9VqH2K436M2JkrKQWztKB_di6PrvjxjbhZgB_VWZgZP0S94Eae4eZrcnCdjuecPLu1RI2g6KAv1WoRIPr9TB2FPxIVrzcxxpSsQlTFU3_5IhYtUbc-vgCa83DVxZvuCvypNJ2VmQz2p5N0P_v7isTxP5uyCh9LHOq1ZwPnEyyY4jMsz7ETrkGzd49Zr_F-OeJlnBW9znA0RpW9i9FdMVmHq-5Bv3Pkl9cp-FqGPPKFyhy9GssRdtg0k6GNmOWx5SzVWgq0mU0x_isTSRGmkY5TmwdxLhnTLAjD8AssFqPCfAUv5zpnVlL6IXiWZ5FqBbFpWRUJpQKbN2Cv6tgkK7nG6cqLYVLlHNjkxDW5Ad9r0fsZwcZbQrvOOrWEfhhQRZoSyfX5YXLS712eBsf95KIBW5X5ktIZx5jdEE8aZZ4N-Fa_RjeivRFdmNEUZaRiGKcxLUfdna3e1ybpHHbdw8a_i27Ch5a7SINKB7dgcfIwNdsIZyZpE5baP89Oe003fp8A8c7t5Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_8eNA-9EMtvdZqWkT6kiN72Y8E-lKOnqeehx8n-lKWTbIrouRE76D0r-_MXpKe0oL0LZAJmd3Z2fnNZvIbgB2TJ9YajsitUCbkKjYhxfEwRezMlZSCOTrQPxrK_jk_uBSXC_C1_hdmxg_RHLiRZ_j9mhycDqTnvDy_csSNoJJFWKaO3j6hOv1DHoWvEjWzN3HGVLxCVMfTPPooGi3TxP58BDXnAauPOL1X8KPWdVZoctOeTrJ2_usJjeP_DuY1vKygaPBttnbewIIt1-DFHEHhOmyd3WHia4N9z72MG2PQvR0_oM7B8fi6nGzAee_7qNsPq44KoZExT0Khcs-wxgpEHi7LZewS5njqOMuMkQLN5jKEAMomUsRZYtLMFVFaSMYMi-I4fgtL5bi07yAouCmYk5SBCJ4XeaI6UWo7TiVCqcgVLfhSz6zOK7px6npxq-u0A4es_ZBb8LkRvZtxbPxNaNebp5Ew9zdUlKaEvhju6cPR2ckgOhjp4xZs1vbTlT8-YIJDVGmUfLbgU3MbPYk-j5jSjqcoIxXDUI2ZOerujfVvbXR3r-cv3j9fdBtW-qOjgR7sDw8_wGrH99WgSsJNWJrcT-1HRDeTbMsv4t9XgvBs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgrQPtVVLr_UjFSm-RLKX_Qp9krPnZ49TT_RBWDbZ3VKU3KF3UPrXd3YviWdpQfoWyITM7szs_GYz-S3Ati6ktZoicjNCx1SkOvZ5PM4QO1PBOSPOb-h_6_HDS3p8za7n4Ev9L8yUH6LZcPOREdZrH-Aj42aCvPjuPDWCkC9ggfJEepfeP3_kjsI3sZrY21PGVLRCvo2nefRJMlrw8_rzCdKcxash4XSX4KZWddpncrs7Gee7xa8_WBz_cyxv4HUFRKO9qee8hTlbLsOrGXrCFdi4GGHZa6OjwLyMy2LUuRs-oMpRf_ijHK_CZffroHMYV-cpxJqnVMZMFIFfjRjEHS4veOokcTRzlORac4ZGczkCAGElZ2kudZY7k2SGE6JJkqbpO5gvh6V9D5Gh2hDHff3BaGEKKdpJZttOSCZE4kwLduqJVUVFNu7PvLhTddGBQ1ZhyC3YakRHU4aNvwl9DtZpJPT9rW9JE0xd9Q7UyeDi7DQ5Hqh-C9Zq86kqGh-wvPFEab70bMGn5jbGkf84oks7nKAMFwQTNdblqHuw1b-1UZ2Dbrj48HzRTVjs73fV6VHv5CO8bIdDNXwb4RrMj-8ndh2hzTjfCC78G6e17yQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Iterative+Closest+Point&rft.jtitle=Computer+graphics+forum&rft.au=Bouaziz%2C+Sofien&rft.au=Tagliasacchi%2C+Andrea&rft.au=Pauly%2C+Mark&rft.date=2013-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=5&rft.spage=113&rft.epage=123&rft_id=info:doi/10.1111%2Fcgf.12178&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KTSQL0JT_P |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |