Sparse Iterative Closest Point

Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point co...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 32; no. 5; pp. 113 - 123
Main Authors Bouaziz, Sofien, Tagliasacchi, Andrea, Pauly, Mark
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp.
AbstractList Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp.
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp .
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp. [PUBLICATION ABSTRACT]
Author Pauly, Mark
Tagliasacchi, Andrea
Bouaziz, Sofien
Author_xml – sequence: 1
  givenname: Sofien
  surname: Bouaziz
  fullname: Bouaziz, Sofien
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
– sequence: 2
  givenname: Andrea
  surname: Tagliasacchi
  fullname: Tagliasacchi, Andrea
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
– sequence: 3
  givenname: Mark
  surname: Pauly
  fullname: Pauly, Mark
  organization: École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
BookMark eNp1kMFPwjAUxhuDiYAe_AcMiRc9DPrWtd2OZhFEiWLAeGy60ZrhWLEdKv-9RdAD0V5eD7_ve9_7WqhRmUohdAq4C_718hfdhRB4fICaEDEexIwmDdTE4P8cU3qEWs7NMcYRZ7SJziZLaZ3qDGtlZV28q05aGqdc3RmboqqP0aGWpVMnu9lGT_3raXoTjB4Gw_RqFEhGojigPIcojAnMMKM6yxnRMego0RFkUjKqlNQZhZArH4dksUwyPcPJjAFIwISQNrrY-i6teVv59WJRuFyVpayUWTnh00PEgYYb9HwPnZuVrXw64TMwCBn2lm3U21K5Nc5ZpUVe1P5AU9VWFqUALDZ9Cd-X-O7LKy73FEtbLKRd_8nu3D-KUq3_B0U66P8ogq2icLX6_FVI-yoYJ5yK5_uBuJtOHkf4dirG5AtZUYgZ
CitedBy_id crossref_primary_10_3390_app13053096
crossref_primary_10_1109_TASE_2016_2640228
crossref_primary_10_3390_app122010247
crossref_primary_10_1109_TPAMI_2023_3247603
crossref_primary_10_1016_j_jneumeth_2015_09_008
crossref_primary_10_1088_1361_6501_acc7be
crossref_primary_10_1162_PRES_a_00303
crossref_primary_10_3390_ijgi9100570
crossref_primary_10_1007_s00138_024_01517_3
crossref_primary_10_53759_9852_JRS202301015
crossref_primary_10_1109_TGRS_2023_3307061
crossref_primary_10_3390_rs13193936
crossref_primary_10_1111_cgf_14614
crossref_primary_10_3390_s20236999
crossref_primary_10_1007_s00530_023_01190_y
crossref_primary_10_1029_2019JB018739
crossref_primary_10_1007_s00371_019_01670_1
crossref_primary_10_1109_TASE_2022_3159553
crossref_primary_10_1109_LRA_2020_2970946
crossref_primary_10_1145_3386569_3392465
crossref_primary_10_1016_j_patrec_2024_08_001
crossref_primary_10_1145_3272127_3275096
crossref_primary_10_1109_TVCG_2023_3247169
crossref_primary_10_1109_TPAMI_2020_2978477
crossref_primary_10_3169_mta_6_151
crossref_primary_10_1109_TGRS_2023_3278769
crossref_primary_10_1007_s00371_016_1326_9
crossref_primary_10_1007_s11548_023_02842_0
crossref_primary_10_1016_j_isprsjprs_2022_01_019
crossref_primary_10_1109_TGRS_2021_3091380
crossref_primary_10_1145_2602142
crossref_primary_10_1360_SST_2020_0500
crossref_primary_10_1007_s41095_015_0019_z
crossref_primary_10_1109_JSTARS_2022_3192264
crossref_primary_10_1007_s00371_023_03209_x
crossref_primary_10_2493_jjspe_89_77
crossref_primary_10_1371_journal_pone_0296704
crossref_primary_10_3390_s18124280
crossref_primary_10_1364_OE_503372
crossref_primary_10_1016_j_jvcir_2017_03_012
crossref_primary_10_1111_cgf_14715
crossref_primary_10_1088_1361_6501_ac99f2
crossref_primary_10_3390_f15060893
crossref_primary_10_1109_TIM_2023_3309384
crossref_primary_10_3390_app12147023
crossref_primary_10_1155_2022_4351951
crossref_primary_10_3390_rs14132986
crossref_primary_10_1109_ACCESS_2018_2873903
crossref_primary_10_1117_1_JEI_27_2_023019
crossref_primary_10_1007_s10489_021_03055_1
crossref_primary_10_1109_TGRS_2024_3488502
crossref_primary_10_1111_cgf_14721
crossref_primary_10_1109_TGRS_2020_2982221
crossref_primary_10_3390_jmse11040840
crossref_primary_10_1364_AO_58_00A242
crossref_primary_10_3390_rs15133375
crossref_primary_10_1016_j_isprsjprs_2021_03_003
crossref_primary_10_1109_TGRS_2019_2926201
crossref_primary_10_1016_j_cagd_2023_102178
crossref_primary_10_3390_en15218068
crossref_primary_10_3390_mi13101577
crossref_primary_10_1016_j_patrec_2016_06_007
crossref_primary_10_1145_3687968
crossref_primary_10_1177_0278364919842324
crossref_primary_10_1080_10095020_2023_2175478
crossref_primary_10_3390_buildings12101754
crossref_primary_10_1109_ACCESS_2024_3462756
crossref_primary_10_1109_JSTARS_2024_3365516
crossref_primary_10_1016_j_autcon_2021_104096
crossref_primary_10_3390_s23063085
crossref_primary_10_1364_AO_469060
crossref_primary_10_3390_rs15143545
crossref_primary_10_1007_s10851_021_01042_2
crossref_primary_10_1061__ASCE_CP_1943_5487_0000959
crossref_primary_10_1109_TMRB_2023_3265708
crossref_primary_10_1111_phor_12497
crossref_primary_10_3390_rs15184493
crossref_primary_10_1016_j_neucom_2022_07_082
crossref_primary_10_1049_htl2_70001
crossref_primary_10_1080_16864360_2017_1397889
crossref_primary_10_1088_1361_6501_aa8214
crossref_primary_10_1088_1361_6501_ad5de2
crossref_primary_10_1109_TGRS_2024_3496198
crossref_primary_10_1007_s11548_019_02005_0
crossref_primary_10_1109_LRA_2021_3097268
crossref_primary_10_1109_TVCG_2015_2505287
crossref_primary_10_1109_TVCG_2018_2832136
crossref_primary_10_1109_ACCESS_2020_3027205
crossref_primary_10_1007_s10489_023_05263_3
crossref_primary_10_1038_s41467_024_45861_4
crossref_primary_10_1109_TPAMI_2015_2513405
crossref_primary_10_1007_s00371_023_03195_0
crossref_primary_10_1109_TGRS_2022_3171625
crossref_primary_10_1186_s12903_024_04565_3
crossref_primary_10_1109_ACCESS_2022_3202223
crossref_primary_10_1109_TPAMI_2023_3262780
crossref_primary_10_1016_j_cviu_2019_03_008
crossref_primary_10_1109_TCSVT_2021_3062811
crossref_primary_10_1109_LRA_2023_3254859
crossref_primary_10_1145_3355089_3356491
crossref_primary_10_1016_j_promfg_2020_01_163
crossref_primary_10_1145_3306346_3323037
crossref_primary_10_1002_rob_21904
crossref_primary_10_1007_s11704_016_6191_1
crossref_primary_10_3390_s22082887
crossref_primary_10_1016_j_isprsjprs_2015_08_007
crossref_primary_10_1145_3182157
crossref_primary_10_1007_s10044_024_01351_3
crossref_primary_10_1109_TMI_2020_3007520
crossref_primary_10_1016_j_compind_2014_11_002
crossref_primary_10_1142_S0219467817500061
crossref_primary_10_3390_s20185331
crossref_primary_10_1109_TCBB_2018_2824814
crossref_primary_10_1016_j_aei_2025_103120
crossref_primary_10_1109_TMM_2021_3089838
crossref_primary_10_1109_TCI_2021_3060915
crossref_primary_10_3390_rs16050743
crossref_primary_10_1109_ACCESS_2023_3279503
crossref_primary_10_1007_s10489_022_03201_3
crossref_primary_10_1145_2601097_2601191
crossref_primary_10_1109_ACCESS_2021_3121390
crossref_primary_10_1109_TGRS_2023_3317822
crossref_primary_10_1016_j_compeleceng_2016_07_003
crossref_primary_10_1038_srep39834
crossref_primary_10_3390_s21175778
crossref_primary_10_1017_S0263574724000845
crossref_primary_10_1109_TIM_2017_2784039
crossref_primary_10_1115_1_4037477
crossref_primary_10_1108_AA_09_2020_0130
crossref_primary_10_1109_TASE_2018_2802725
crossref_primary_10_1007_s13218_019_00593_2
crossref_primary_10_3390_rs15123054
crossref_primary_10_1016_j_vrih_2022_09_001
crossref_primary_10_1109_TGRS_2020_3045456
crossref_primary_10_1016_j_jvcir_2015_08_007
crossref_primary_10_1111_cgf_12700
crossref_primary_10_1109_TII_2024_3507942
crossref_primary_10_1016_j_buildenv_2021_108675
crossref_primary_10_3390_rs13163210
crossref_primary_10_3390_s21217023
crossref_primary_10_1109_ACCESS_2018_2830819
crossref_primary_10_1177_02783649241301443
crossref_primary_10_3724_SP_J_1089_2022_18823
crossref_primary_10_1109_LRA_2018_2885579
crossref_primary_10_1109_TIP_2022_3231132
crossref_primary_10_1109_TPAMI_2021_3054619
crossref_primary_10_1364_OE_518556
crossref_primary_10_1109_TIM_2024_3470951
crossref_primary_10_1109_LRA_2024_3430132
crossref_primary_10_1109_TCSVT_2024_3379220
crossref_primary_10_1145_3306346_3322942
crossref_primary_10_1016_j_compeleceng_2022_108098
crossref_primary_10_1029_2018GL080858
crossref_primary_10_1109_TIP_2020_3019649
crossref_primary_10_1109_TPAMI_2023_3244951
crossref_primary_10_1109_LSP_2025_3535221
crossref_primary_10_1109_TIM_2025_3529536
crossref_primary_10_1109_TPAMI_2024_3355198
crossref_primary_10_1145_3528223_3530175
crossref_primary_10_3390_rs13234755
crossref_primary_10_1016_j_compag_2024_109435
crossref_primary_10_1145_3386569_3392419
crossref_primary_10_1016_j_engappai_2017_09_017
crossref_primary_10_1080_15481603_2023_2197281
crossref_primary_10_1109_ACCESS_2023_3280639
crossref_primary_10_3390_rs15123185
crossref_primary_10_1007_s11548_024_03129_8
crossref_primary_10_1109_TVCG_2023_3280171
crossref_primary_10_1109_ACCESS_2025_3535151
crossref_primary_10_1111_cgf_13599
crossref_primary_10_1016_j_isprsjprs_2021_08_011
crossref_primary_10_1109_TIP_2019_2909197
crossref_primary_10_1007_s00170_018_2173_9
crossref_primary_10_1016_j_cagd_2015_03_022
crossref_primary_10_1080_16864360_2018_1486962
crossref_primary_10_1109_LRA_2022_3171068
crossref_primary_10_1109_TGRS_2021_3112589
crossref_primary_10_1109_TIFS_2018_2889255
crossref_primary_10_1016_j_cag_2016_05_007
crossref_primary_10_1016_j_cad_2022_103459
crossref_primary_10_1109_LRA_2022_3214056
crossref_primary_10_1109_LRA_2023_3239312
crossref_primary_10_1109_ACCESS_2024_3407341
crossref_primary_10_1109_TIP_2016_2636661
crossref_primary_10_1016_j_isprsjprs_2022_04_024
crossref_primary_10_1016_j_neucom_2022_08_047
crossref_primary_10_1007_s10514_020_09948_3
crossref_primary_10_1109_LRA_2021_3093868
crossref_primary_10_1109_TRO_2023_3335691
crossref_primary_10_3390_drones5010007
crossref_primary_10_3390_s150101435
crossref_primary_10_1109_TASE_2018_2861618
crossref_primary_10_1007_s11075_016_0170_3
crossref_primary_10_1364_AO_505234
crossref_primary_10_3390_rs14112559
crossref_primary_10_1109_TVCG_2021_3086113
crossref_primary_10_1126_sciadv_aax5703
crossref_primary_10_1109_TIP_2022_3223793
crossref_primary_10_1109_TIV_2017_2654065
crossref_primary_10_1007_s10589_015_9819_4
crossref_primary_10_1016_j_media_2017_02_005
crossref_primary_10_1109_TIP_2017_2695888
crossref_primary_10_1111_cgf_12699
crossref_primary_10_1111_cgf_12698
crossref_primary_10_1109_TITS_2022_3200938
crossref_primary_10_18178_ijmlc_2016_6_3_592
crossref_primary_10_1109_TMM_2024_3368913
crossref_primary_10_1109_LRA_2020_2965893
crossref_primary_10_3390_s21217177
crossref_primary_10_1007_s10915_018_0757_z
crossref_primary_10_3169_mta_7_148
crossref_primary_10_1007_s00170_020_06148_2
crossref_primary_10_1109_LRA_2024_3376157
crossref_primary_10_1145_2661229_2661263
crossref_primary_10_3390_app14135507
crossref_primary_10_1007_s11263_021_01439_x
crossref_primary_10_1109_ACCESS_2023_3314188
crossref_primary_10_1145_3009905
crossref_primary_10_1109_TIM_2021_3126380
crossref_primary_10_1002_rob_22032
crossref_primary_10_1109_TGRS_2016_2639025
crossref_primary_10_1007_s10439_015_1446_9
crossref_primary_10_1109_TITS_2023_3268273
crossref_primary_10_1109_TVCG_2022_3193018
crossref_primary_10_11648_j_ajtas_20241306_12
crossref_primary_10_1111_cgf_14081
crossref_primary_10_1007_s00006_018_0864_9
crossref_primary_10_1016_j_optlastec_2023_109328
crossref_primary_10_1007_s00530_024_01369_x
crossref_primary_10_1109_TVCG_2022_3157061
crossref_primary_10_1111_cgf_142637
crossref_primary_10_3169_mta_12_175
crossref_primary_10_3724_2097_3063_20240016
crossref_primary_10_1111_cgf_13798
crossref_primary_10_3390_rs15245641
crossref_primary_10_1142_S0219467817500218
crossref_primary_10_1109_TRO_2021_3123898
crossref_primary_10_1063_5_0101128
crossref_primary_10_3390_rs13081540
crossref_primary_10_1145_3072959_3073635
Cites_doi 10.1109/CVPR.2012.6247673
10.1109/LSP.2007.898300
10.1006/cviu.1995.1024
10.1016/S1077-3142(03)00009-2
10.1145/2010324.1964972
10.1016/j.cagd.2009.09.001
10.1007/978-3-662-05105-4_12
10.1016/j.cviu.2004.04.002
10.1007/s11263-006-5167-2
10.1109/TPAMI.2010.223
10.1145/1057432.1057435
10.1109/TSP.2012.2212015
10.1109/70.210797
10.1109/ICASSP.2008.4518498
10.1016/j.imavis.2003.09.004
10.15607/RSS.2009.V.021
10.1016/j.imavis.2004.05.007
10.1016/j.cad.2004.02.009
10.1016/S0167-8655(99)00055-0
10.1109/MSP.2007.914731
10.1109/TIT.2005.862083
10.1007/s001380050048
10.1109/34.121791
10.1561/2200000016
10.1007/978-3-540-24672-5_44
10.1007/BF01427149
10.1109/TSP.2010.2044837
10.1145/355744.355745
10.1145/1360612.1360684
10.1017/CBO9780511804441
10.1111/j.1467-8659.2011.01884.x
10.1561/2200000015
10.1109/ICASSP.2013.6638818
ContentType Journal Article
Copyright 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12178
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage 123
ExternalDocumentID 3048788661
10_1111_cgf_12178
CGF12178
ark_67375_WNG_KTSQL0JT_P
Genre article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHQJS
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-a6348-57c142831d065fbc63f81f49f41baa65eeafb5127e8653b8a9bfd09d611a10333
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Tue Aug 05 11:05:10 EDT 2025
Fri Jul 25 23:47:06 EDT 2025
Tue Jul 01 02:23:03 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Wed Aug 20 07:26:23 EDT 2025
Wed Oct 30 09:48:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a6348-57c142831d065fbc63f81f49f41baa65eeafb5127e8653b8a9bfd09d611a10333
Notes ArticleID:CGF12178
istex:5E4926C92B16744B19A457FF54AFEAC7A5D3FFAA
ark:/67375/WNG-KTSQL0JT-P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1426126010
PQPubID 30877
PageCount 11
ParticipantIDs proquest_miscellaneous_1671471523
proquest_journals_1426126010
crossref_citationtrail_10_1111_cgf_12178
crossref_primary_10_1111_cgf_12178
wiley_primary_10_1111_cgf_12178_CGF12178
istex_primary_ark_67375_WNG_KTSQL0JT_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Friedman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (1977), 209-226. 3, 4.
Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understanding 89, 2-3 (2003), 114-141. 9.
Chartrand R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14, 10 (2007), 707-710. 4, 5.
Boyd S., Vandenberghe L.: Convex optimization. Cambridge University Press, 2004. 11.
Bach F. R., Jenatton R., Mairal J., Obozinski G.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4, 1 (2012), 1-106. 2, 4.
Eggert D. W., Lorusso A., Fisher R. B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9 (1997), 272-290. 2, 3, 4.
Mirza M., Boyer K.: Performance evaluation of a class of m-estimators for surface parameter estimation in noisy range data. IEEE Transactions on Robotics and Automation 9 (1993), 75-85. 6, 8.
Pottmann H., Huang Q.-X., Yang Y.-L., Hu S.-M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision 67, 3 (2006), 277-296. 3, 6, 8.
Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 11.
Fitzgibbon A. W.: Robust registration of 2d and 3d point sets. Image Vision Comput. 21 (2003), 1145-1153. 3.
Besl P., McKay H.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239-256. 2, 3, 4.
Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Computer Aided Geometric Design 27, 1 (2010), 60-77. 4, 6, 7.
Trucco E., Fusiello A., Roberto V.: Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recognition Letters 20, 9 (1999), 889-898. 3.
Aiger D., Mitra N. J., Cohen-Or D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27, 3 (2008), 85:1-85:10. 2, 3.
Masuda T., Yokoya N.: A robust method for registration and segmentation of multiple range images. Computer Vision and Image Understanding 61, 3 (1995), 295-307. 3.
Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681-1707. 3.
Li Y., Gu P.: Free-form surface inspection techniques state of the art review. Computer-Aided Design 36, 13 (2004), 1395-1417. 2.
Candès E. J., Wakin M. B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 2 (2008). 2.
Jian B., Vemuri B.: Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1633-1645. 3.
Nocedal J., Wright S. J.: Numerical optimization. Springer Verlag, 2006. 11.
Pottmann H., Leopoldseder S., Hofer M.: Registration without ICP. Computer Vision and Image Understanding 95, 1 (2004), 54-71. 3.
Marjanovic G., Solo V.: On ℓq optimization and matrix completion. IEEE Trans. Signal Process. 60, 11 (2012), 5714-5724. 2, 4, 5, 11.
Chetverikov D., Stepanov D., Krsek P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23 (2005), 299-309. 8, 9.
Eldar Y. C., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 6 (2010), 3042-3054. 5.
Weise T., Bouaziz S., Li H., Pauly M.: Realtime performance-based facial animation. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 77. 2.
Banerjee A., K A.: Metric Space & Complex Analysis. New Age International (P) Limited, 2008. 5.
Rusinkiewicz S.: Derivation of point to plane minimization, 2013. http://www.cs.princeton.edu/~smr/papers/icpstability.pdf. 7.
Zhang Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13, 2 (1994), 119-152. 3.
Candès E. J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 2 (2006), 489-509. 4.
2012; 60
1993; 9
2006; 52
2010; 58
2012
2011
2009
2008
2011; 30
2011; 33
2006
2005
1999; 20
2004
1992; 14
1992
2003
1991
2002
2011; 3
2012; 99
1997; 9
2007; 14
2005; 23
1999
1995; 61
2010; 27
2004; 95
2006; 67
2001
2004; 36
2008; 27
2008; 25
1977; 3
1994; 13
2013
2012; 4
2003; 21
2003; 89
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_23_2
e_1_2_10_20_2
Rusinkiewicz S. (e_1_2_10_42_2); 2013
e_1_2_10_43_2
e_1_2_10_21_2
e_1_2_10_41_2
e_1_2_10_40_2
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
Granger S. (e_1_2_10_24_2) 2002
Banerjee A. K A. (e_1_2_10_4_2) 2008
Nocedal J. (e_1_2_10_33_2) 2006
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_27_2
e_1_2_10_48_2
e_1_2_10_47_2
e_1_2_10_25_2
Tam G. (e_1_2_10_44_2) 2012
e_1_2_10_46_2
References_xml – reference: Boyd S., Vandenberghe L.: Convex optimization. Cambridge University Press, 2004. 11.
– reference: Candès E. J., Wakin M. B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25, 2 (2008). 2.
– reference: Eldar Y. C., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58, 6 (2010), 3042-3054. 5.
– reference: Jian B., Vemuri B.: Robust point set registration using gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (2011), 1633-1645. 3.
– reference: Aiger D., Mitra N. J., Cohen-Or D.: 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 27, 3 (2008), 85:1-85:10. 2, 3.
– reference: Boyd S., Parikh N., Chu E., Peleato B., Eckstein J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-122. 11.
– reference: Friedman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (1977), 209-226. 3, 4.
– reference: Chartrand R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14, 10 (2007), 707-710. 4, 5.
– reference: Chetverikov D., Stepanov D., Krsek P.: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm. Image and Vision Computing 23 (2005), 299-309. 8, 9.
– reference: Weise T., Bouaziz S., Li H., Pauly M.: Realtime performance-based facial animation. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4 (2011), 77. 2.
– reference: Fitzgibbon A. W.: Robust registration of 2d and 3d point sets. Image Vision Comput. 21 (2003), 1145-1153. 3.
– reference: Marjanovic G., Solo V.: On ℓq optimization and matrix completion. IEEE Trans. Signal Process. 60, 11 (2012), 5714-5724. 2, 4, 5, 11.
– reference: Nocedal J., Wright S. J.: Numerical optimization. Springer Verlag, 2006. 11.
– reference: Pottmann H., Leopoldseder S., Hofer M.: Registration without ICP. Computer Vision and Image Understanding 95, 1 (2004), 54-71. 3.
– reference: Banerjee A., K A.: Metric Space & Complex Analysis. New Age International (P) Limited, 2008. 5.
– reference: Masuda T., Yokoya N.: A robust method for registration and segmentation of multiple range images. Computer Vision and Image Understanding 61, 3 (1995), 295-307. 3.
– reference: Trucco E., Fusiello A., Roberto V.: Robust motion and correspondence of noisy 3-D point sets with missing data. Pattern Recognition Letters 20, 9 (1999), 889-898. 3.
– reference: Rusinkiewicz S.: Derivation of point to plane minimization, 2013. http://www.cs.princeton.edu/~smr/papers/icpstability.pdf. 7.
– reference: Li Y., Gu P.: Free-form surface inspection techniques state of the art review. Computer-Aided Design 36, 13 (2004), 1395-1417. 2.
– reference: Pottmann H., Huang Q.-X., Yang Y.-L., Hu S.-M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. International Journal of Computer Vision 67, 3 (2006), 277-296. 3, 6, 8.
– reference: Besl P., McKay H.: A method for registration of 3D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 2 (1992), 239-256. 2, 3, 4.
– reference: Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Understanding 89, 2-3 (2003), 114-141. 9.
– reference: Eggert D. W., Lorusso A., Fisher R. B.: Estimating 3-d rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications, 9 (1997), 272-290. 2, 3, 4.
– reference: Bach F. R., Jenatton R., Mairal J., Obozinski G.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4, 1 (2012), 1-106. 2, 4.
– reference: Zhang Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13, 2 (1994), 119-152. 3.
– reference: Candès E. J., Romberg J., Tao T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 2 (2006), 489-509. 4.
– reference: Mirza M., Boyer K.: Performance evaluation of a class of m-estimators for surface parameter estimation in noisy range data. IEEE Transactions on Robotics and Automation 9 (1993), 75-85. 6, 8.
– reference: Van Kaick O., Zhang H., Hamarneh G., Cohen-Or D.: A survey on shape correspondence. Computer Graphics Forum 30, 6 (2011), 1681-1707. 3.
– reference: Flöry S., Hofer M.: Surface fitting and registration of point clouds using approximations of the unsigned distance function. Computer Aided Geometric Design 27, 1 (2010), 60-77. 4, 6, 7.
– start-page: 3869
  year: 2008
  end-page: 3872
– volume: 89
  start-page: 114
  issue: 2–3
  year: 2003
  end-page: 141
  article-title: A new point matching algorithm for non‐rigid registration
  publication-title: Comput. Vis. Image Understanding
– start-page: 197
  year: 2005
  end-page: 206
– start-page: 160
  year: 1999
  end-page: 168
– start-page: 145
  year: 2001
  end-page: 152
– year: 2005
– volume: 21
  start-page: 1145
  year: 2003
  end-page: 1153
  article-title: Robust registration of 2d and 3d point sets
  publication-title: Image Vision Comput.
– volume: 95
  start-page: 54
  issue: 1
  year: 2004
  end-page: 71
  article-title: Registration without ICP
  publication-title: Computer Vision and Image Understanding
– volume: 30
  start-page: 1681
  issue: 6
  year: 2011
  end-page: 1707
  article-title: A survey on shape correspondence
  publication-title: Computer Graphics Forum
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
– volume: 33
  start-page: 1633
  issue: 8
  year: 2011
  end-page: 1645
  article-title: Robust point set registration using gaussian mixture models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 83
  year: 1992
  end-page: 89
– start-page: 2724
  year: 1991
  end-page: 2729
– start-page: 558
  year: 2004
  end-page: 569
– volume: 36
  start-page: 1395
  issue: 13
  year: 2004
  end-page: 1417
  article-title: Free‐form surface inspection techniques state of the art review
  publication-title: Computer-Aided Design
– start-page: 418
  year: 2002
  end-page: 432
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  end-page: 710
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Processing Letters
– volume: 27
  start-page: 85:1
  issue: 3
  year: 2008
  end-page: 85:10
  article-title: 4‐points congruent sets for robust pairwise surface registration
  publication-title: ACM Trans. Graph.
– volume: 13
  start-page: 119
  issue: 2
  year: 1994
  end-page: 152
  article-title: Iterative point matching for registration of free‐form curves and surfaces
  publication-title: Int. J. Comput. Vision
– volume: 23
  start-page: 299
  year: 2005
  end-page: 309
  article-title: Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm
  publication-title: Image and Vision Computing
– volume: 3
  start-page: 209
  issue: 3
  year: 1977
  end-page: 226
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– year: 2012
– volume: 9
  start-page: 272
  year: 1997
  end-page: 290
  article-title: Estimating 3‐d rigid body transformations: a comparison of four major algorithms
  publication-title: Machine Vision and Applications
– volume: 60
  start-page: 5714
  issue: 11
  year: 2012
  end-page: 5724
  article-title: On ℓ optimization and matrix completion
  publication-title: IEEE Trans. Signal Process
– volume: 99
  start-page: 1
  year: 2012
  end-page: 20
– volume: 67
  start-page: 277
  issue: 3
  year: 2006
  end-page: 296
  article-title: Geometry and convergence analysis of algorithms for registration of 3D shapes
  publication-title: International Journal of Computer Vision
– year: 2008
– year: 2006
– year: 2004
– volume: 61
  start-page: 295
  issue: 3
  year: 1995
  end-page: 307
  article-title: A robust method for registration and segmentation of multiple range images
  publication-title: Computer Vision and Image Understanding
– start-page: 26
  year: 2009
  end-page: 27
– start-page: 222
  year: 2004
  end-page: 227
– volume: 9
  start-page: 75
  year: 1993
  end-page: 85
  article-title: Performance evaluation of a class of m‐estimators for surface parameter estimation in noisy range data
  publication-title: IEEE Transactions on Robotics and Automation
– volume: 2013
  publication-title: Derivation of point to plane minimization
– volume: 30
  issue: 4
  year: 2011
  end-page: 77
  article-title: Realtime performance‐based facial animation
  publication-title: ACM Trans. Graph. (Proc. SIGGRAPH)
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– volume: 58
  start-page: 3042
  issue: 6
  year: 2010
  end-page: 3054
  article-title: Block‐sparse signals: Uncertainty relations and efficient recovery
  publication-title: IEEE Trans. Signal Process
– start-page: 459
  year: 2011
  end-page: 464
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  end-page: 256
  article-title: A method for registration of 3D shapes
  publication-title: IEEE Trans. on Pattern Analysis and Machine Intelligence
– volume: 20
  start-page: 889
  issue: 9
  year: 1999
  end-page: 898
  article-title: Robust motion and correspondence of noisy 3‐D point sets with missing data
  publication-title: Pattern Recognition Letters
– start-page: 22
  year: 2004
  end-page: 31
– start-page: 221
  year: 2003
  end-page: 242
– volume: 27
  start-page: 60
  issue: 1
  year: 2010
  end-page: 77
  article-title: Surface fitting and registration of point clouds using approximations of the unsigned distance function
  publication-title: Computer Aided Geometric Design
– volume: 25
  issue: 2
  year: 2008
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  end-page: 106
  article-title: Optimization with sparsity‐inducing penalties
  publication-title: Foundations and Trends in Machine Learning
– year: 2013
– ident: e_1_2_10_25_2
  doi: 10.1109/CVPR.2012.6247673
– ident: e_1_2_10_23_2
– ident: e_1_2_10_9_2
  doi: 10.1109/LSP.2007.898300
– ident: e_1_2_10_32_2
  doi: 10.1006/cviu.1995.1024
– ident: e_1_2_10_12_2
  doi: 10.1016/S1077-3142(03)00009-2
– ident: e_1_2_10_34_2
– ident: e_1_2_10_48_2
  doi: 10.1145/2010324.1964972
– ident: e_1_2_10_21_2
  doi: 10.1016/j.cagd.2009.09.001
– start-page: 418
  volume-title: Proc. of the European Conf. on Computer Vision
  year: 2002
  ident: e_1_2_10_24_2
– ident: e_1_2_10_36_2
  doi: 10.1007/978-3-662-05105-4_12
– ident: e_1_2_10_38_2
  doi: 10.1016/j.cviu.2004.04.002
– ident: e_1_2_10_37_2
  doi: 10.1007/s11263-006-5167-2
– ident: e_1_2_10_26_2
  doi: 10.1109/TPAMI.2010.223
– ident: e_1_2_10_11_2
– ident: e_1_2_10_30_2
  doi: 10.1145/1057432.1057435
– ident: e_1_2_10_31_2
  doi: 10.1109/TSP.2012.2212015
– ident: e_1_2_10_29_2
  doi: 10.1109/70.210797
– volume: 2013
  ident: e_1_2_10_42_2
  publication-title: Derivation of point to plane minimization
– ident: e_1_2_10_17_2
  doi: 10.1109/ICASSP.2008.4518498
– ident: e_1_2_10_22_2
  doi: 10.1016/j.imavis.2003.09.004
– ident: e_1_2_10_43_2
  doi: 10.15607/RSS.2009.V.021
– ident: e_1_2_10_14_2
  doi: 10.1016/j.imavis.2004.05.007
– ident: e_1_2_10_41_2
– volume-title: Metric Space & Complex Analysis
  year: 2008
  ident: e_1_2_10_4_2
– ident: e_1_2_10_5_2
– ident: e_1_2_10_27_2
  doi: 10.1016/j.cad.2004.02.009
– ident: e_1_2_10_45_2
  doi: 10.1016/S0167-8655(99)00055-0
– ident: e_1_2_10_15_2
  doi: 10.1109/MSP.2007.914731
– ident: e_1_2_10_13_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_10_19_2
  doi: 10.1007/s001380050048
– ident: e_1_2_10_10_2
– ident: e_1_2_10_39_2
– start-page: 1
  volume-title: Trans. on Visualization and Computer Graphics
  year: 2012
  ident: e_1_2_10_44_2
– ident: e_1_2_10_28_2
– ident: e_1_2_10_6_2
  doi: 10.1109/34.121791
– ident: e_1_2_10_7_2
  doi: 10.1561/2200000016
– ident: e_1_2_10_35_2
– ident: e_1_2_10_46_2
  doi: 10.1007/978-3-540-24672-5_44
– ident: e_1_2_10_49_2
  doi: 10.1007/BF01427149
– ident: e_1_2_10_18_2
  doi: 10.1109/TSP.2010.2044837
– ident: e_1_2_10_20_2
  doi: 10.1145/355744.355745
– ident: e_1_2_10_2_2
  doi: 10.1145/1360612.1360684
– ident: e_1_2_10_8_2
  doi: 10.1017/CBO9780511804441
– volume-title: Numerical optimization
  year: 2006
  ident: e_1_2_10_33_2
– ident: e_1_2_10_47_2
  doi: 10.1111/j.1467-8659.2011.01884.x
– ident: e_1_2_10_3_2
  doi: 10.1561/2200000015
– ident: e_1_2_10_40_2
– ident: e_1_2_10_16_2
  doi: 10.1109/ICASSP.2013.6638818
SSID ssj0004765
Score 2.55164
Snippet Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Algorithms
and systems
Computer graphics
Computer science
Heuristic
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric algorithms
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric algorithms, languages, and systems
Iterative methods
languages
Optimization
Registration
Robots
Studies
Three dimensional
Three dimensional models
Title Sparse Iterative Closest Point
URI https://api.istex.fr/ark:/67375/WNG-KTSQL0JT-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12178
https://www.proquest.com/docview/1426126010
https://www.proquest.com/docview/1671471523
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8heBkPgw2mlY8qmxDiJShu_JFoT1VHYXwJ1iJ4mBQ5iY1QqxTRVkL767lzk1AQSNPeIuWinH0-3-_s888AOzqLjNEckVuutM9VqH2K436M2JkrKQWztKB_di6PrvjxjbhZgB_VWZgZP0S94Eae4eZrcnCdjuecPLu1RI2g6KAv1WoRIPr9TB2FPxIVrzcxxpSsQlTFU3_5IhYtUbc-vgCa83DVxZvuCvypNJ2VmQz2p5N0P_v7isTxP5uyCh9LHOq1ZwPnEyyY4jMsz7ETrkGzd49Zr_F-OeJlnBW9znA0RpW9i9FdMVmHq-5Bv3Pkl9cp-FqGPPKFyhy9GssRdtg0k6GNmOWx5SzVWgq0mU0x_isTSRGmkY5TmwdxLhnTLAjD8AssFqPCfAUv5zpnVlL6IXiWZ5FqBbFpWRUJpQKbN2Cv6tgkK7nG6cqLYVLlHNjkxDW5Ad9r0fsZwcZbQrvOOrWEfhhQRZoSyfX5YXLS712eBsf95KIBW5X5ktIZx5jdEE8aZZ4N-Fa_RjeivRFdmNEUZaRiGKcxLUfdna3e1ybpHHbdw8a_i27Ch5a7SINKB7dgcfIwNdsIZyZpE5baP89Oe003fp8A8c7t5Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_8eNA-9EMtvdZqWkT6kiN72Y8E-lKOnqeehx8n-lKWTbIrouRE76D0r-_MXpKe0oL0LZAJmd3Z2fnNZvIbgB2TJ9YajsitUCbkKjYhxfEwRezMlZSCOTrQPxrK_jk_uBSXC_C1_hdmxg_RHLiRZ_j9mhycDqTnvDy_csSNoJJFWKaO3j6hOv1DHoWvEjWzN3HGVLxCVMfTPPooGi3TxP58BDXnAauPOL1X8KPWdVZoctOeTrJ2_usJjeP_DuY1vKygaPBttnbewIIt1-DFHEHhOmyd3WHia4N9z72MG2PQvR0_oM7B8fi6nGzAee_7qNsPq44KoZExT0Khcs-wxgpEHi7LZewS5njqOMuMkQLN5jKEAMomUsRZYtLMFVFaSMYMi-I4fgtL5bi07yAouCmYk5SBCJ4XeaI6UWo7TiVCqcgVLfhSz6zOK7px6npxq-u0A4es_ZBb8LkRvZtxbPxNaNebp5Ew9zdUlKaEvhju6cPR2ckgOhjp4xZs1vbTlT8-YIJDVGmUfLbgU3MbPYk-j5jSjqcoIxXDUI2ZOerujfVvbXR3r-cv3j9fdBtW-qOjgR7sDw8_wGrH99WgSsJNWJrcT-1HRDeTbMsv4t9XgvBs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgrQPtVVLr_UjFSm-RLKX_Qp9krPnZ49TT_RBWDbZ3VKU3KF3UPrXd3YviWdpQfoWyITM7szs_GYz-S3Ati6ktZoicjNCx1SkOvZ5PM4QO1PBOSPOb-h_6_HDS3p8za7n4Ev9L8yUH6LZcPOREdZrH-Aj42aCvPjuPDWCkC9ggfJEepfeP3_kjsI3sZrY21PGVLRCvo2nefRJMlrw8_rzCdKcxash4XSX4KZWddpncrs7Gee7xa8_WBz_cyxv4HUFRKO9qee8hTlbLsOrGXrCFdi4GGHZa6OjwLyMy2LUuRs-oMpRf_ijHK_CZffroHMYV-cpxJqnVMZMFIFfjRjEHS4veOokcTRzlORac4ZGczkCAGElZ2kudZY7k2SGE6JJkqbpO5gvh6V9D5Gh2hDHff3BaGEKKdpJZttOSCZE4kwLduqJVUVFNu7PvLhTddGBQ1ZhyC3YakRHU4aNvwl9DtZpJPT9rW9JE0xd9Q7UyeDi7DQ5Hqh-C9Zq86kqGh-wvPFEab70bMGn5jbGkf84oks7nKAMFwQTNdblqHuw1b-1UZ2Dbrj48HzRTVjs73fV6VHv5CO8bIdDNXwb4RrMj-8ndh2hzTjfCC78G6e17yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Iterative+Closest+Point&rft.jtitle=Computer+graphics+forum&rft.au=Bouaziz%2C+Sofien&rft.au=Tagliasacchi%2C+Andrea&rft.au=Pauly%2C+Mark&rft.date=2013-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=5&rft.spage=113&rft.epage=123&rft_id=info:doi/10.1111%2Fcgf.12178&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KTSQL0JT_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon