Deep Convolutional Neural Networks for Hyperspectral Image Classification

Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More sp...

Full description

Saved in:
Bibliographic Details
Published inJournal of sensors Vol. 2015; no. 2015; pp. 1 - 12
Main Authors Zhang, Fan, Wei, Li, Huang, Yangyu, Hu, Wei, Li, Heng-Chao
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-725X
1687-7268
DOI10.1155/2015/258619

Cover

Loading…
Abstract Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods.
AbstractList Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods.
Author Huang, Yangyu
Hu, Wei
Li, Heng-Chao
Zhang, Fan
Wei, Li
Author_xml – sequence: 1
  fullname: Zhang, Fan
– sequence: 2
  fullname: Wei, Li
– sequence: 3
  fullname: Huang, Yangyu
– sequence: 4
  fullname: Hu, Wei
– sequence: 5
  fullname: Li, Heng-Chao
BookMark eNqN0c1LwzAUAPAgE9ymJ-9S8CLKNGnMR49SPzYYelHwVrL0VTO7piatY_-92SoiA9FLXiC_93h5b4B6la0AoUOCzwlh7CLGJBxMcpLsoD7hUoxEzGXv-86e99DA-znGnApK-2hyDVBHqa0-bNk2xlaqjO6hdZvQLK1781FhXTRe1eB8DbpZP00W6gWitFTem8JotU7cR7uFKj0cfMUherq9eUzHo-nD3SS9mo4Uj2UzIjiRQsy4zjGloQcMcS6Y1HRGeE6Y0gXjTKlc5FwzkSgNUgkqsRaKQsFjOkQnXd3a2fcWfJMtjNdQlqoC2_qMhJoEXwos_kFxQmTCKAv0eIvObevCNDYq5jFLSBIU6ZR21nsHRaZNs_l9GIspM4Kz9R6y9R6ybg8h52wrp3ZmodzqF33a6VdT5Wpp_sBHHYZAoFA_sMBYMvoJ85KfiA
CitedBy_id crossref_primary_10_3390_rs14132997
crossref_primary_10_1109_LGRS_2024_3379232
crossref_primary_10_1007_s10462_024_11100_x
crossref_primary_10_1016_j_isprsjprs_2020_05_023
crossref_primary_10_1109_JSTARS_2018_2888808
crossref_primary_10_3390_electronics12173641
crossref_primary_10_1049_iet_ipr_2019_1200
crossref_primary_10_1080_01431161_2017_1362131
crossref_primary_10_1109_TGRS_2024_3385655
crossref_primary_10_1186_s13640_018_0284_8
crossref_primary_10_3390_rs13173411
crossref_primary_10_1016_j_compag_2024_109498
crossref_primary_10_1007_s11760_023_02964_7
crossref_primary_10_1016_j_meatsci_2018_05_020
crossref_primary_10_1109_TGRS_2018_2805286
crossref_primary_10_1016_j_compeleceng_2022_108381
crossref_primary_10_1016_j_rse_2018_11_031
crossref_primary_10_3390_f14091881
crossref_primary_10_1016_j_jjimei_2022_100058
crossref_primary_10_1109_TGRS_2020_3044094
crossref_primary_10_1016_j_rse_2018_11_032
crossref_primary_10_1016_j_engappai_2023_106017
crossref_primary_10_3390_rs13050930
crossref_primary_10_1016_j_eswa_2024_125106
crossref_primary_10_3390_rs16010193
crossref_primary_10_3390_rs15215208
crossref_primary_10_3390_s25061858
crossref_primary_10_1109_LGRS_2020_2992661
crossref_primary_10_1109_TGRS_2022_3231930
crossref_primary_10_1109_TGRS_2023_3253247
crossref_primary_10_1109_TGRS_2023_3253248
crossref_primary_10_3390_rs15071937
crossref_primary_10_1007_s42979_022_01425_1
crossref_primary_10_3390_technologies12090163
crossref_primary_10_1007_s11554_022_01226_y
crossref_primary_10_1016_j_engappai_2023_107351
crossref_primary_10_1109_ACCESS_2017_2773363
crossref_primary_10_3390_a11010009
crossref_primary_10_1109_JSTARS_2022_3210373
crossref_primary_10_1109_JSTARS_2024_3491294
crossref_primary_10_1117_1_JRS_13_046512
crossref_primary_10_3390_app12010174
crossref_primary_10_1109_TGRS_2018_2888485
crossref_primary_10_1109_JSTARS_2018_2795753
crossref_primary_10_1016_j_cviu_2019_102801
crossref_primary_10_1016_j_knosys_2019_01_020
crossref_primary_10_1109_LGRS_2022_3167535
crossref_primary_10_1109_TGRS_2020_3007921
crossref_primary_10_1016_j_eswa_2023_119858
crossref_primary_10_3390_s22249678
crossref_primary_10_3390_rs11020194
crossref_primary_10_3390_rs13122285
crossref_primary_10_1109_LGRS_2019_2945122
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1109_TGRS_2023_3266565
crossref_primary_10_3390_rs11172008
crossref_primary_10_1007_s12145_024_01466_5
crossref_primary_10_1109_ACCESS_2024_3455369
crossref_primary_10_1007_s12145_024_01651_6
crossref_primary_10_3390_rs15194681
crossref_primary_10_1016_j_jksuci_2019_12_012
crossref_primary_10_1016_j_infrared_2024_105449
crossref_primary_10_1109_TGRS_2018_2843525
crossref_primary_10_12720_jait_15_8_991_1000
crossref_primary_10_1117_1_JRS_16_038501
crossref_primary_10_1080_02533839_2020_1831964
crossref_primary_10_1109_TGRS_2024_3442784
crossref_primary_10_1109_JSTARS_2017_2752282
crossref_primary_10_1117_1_JRS_13_024525
crossref_primary_10_3390_rs15184642
crossref_primary_10_1002_cpe_6945
crossref_primary_10_1109_TGRS_2024_3485483
crossref_primary_10_1016_j_neunet_2017_07_017
crossref_primary_10_1080_01431161_2018_1425561
crossref_primary_10_3390_rs10030395
crossref_primary_10_18287_2412_6179_CO_832
crossref_primary_10_1007_s11042_023_17546_5
crossref_primary_10_1109_ACCESS_2020_3040895
crossref_primary_10_1109_TGRS_2020_3003341
crossref_primary_10_1109_TGRS_2023_3254523
crossref_primary_10_1016_j_compag_2023_108092
crossref_primary_10_1109_TGRS_2021_3133582
crossref_primary_10_3390_jimaging4050063
crossref_primary_10_1002_ima_22616
crossref_primary_10_1155_2018_9218092
crossref_primary_10_1007_s11227_018_2300_2
crossref_primary_10_1016_j_neucom_2018_11_047
crossref_primary_10_1109_JSTARS_2023_3342983
crossref_primary_10_3390_electronics13132540
crossref_primary_10_1109_TNNLS_2023_3270369
crossref_primary_10_1007_s11554_018_0775_y
crossref_primary_10_3390_rs12111780
crossref_primary_10_1016_j_infrared_2024_105425
crossref_primary_10_1109_ACCESS_2022_3166505
crossref_primary_10_3390_rs10101618
crossref_primary_10_1080_01431161_2023_2270109
crossref_primary_10_1155_2021_5541134
crossref_primary_10_1007_s11042_018_5986_5
crossref_primary_10_1109_MGRS_2020_2979764
crossref_primary_10_1186_s13640_018_0329_z
crossref_primary_10_1007_s41064_019_00066_z
crossref_primary_10_1038_srep37994
crossref_primary_10_1364_AO_386972
crossref_primary_10_1186_s13007_023_01046_6
crossref_primary_10_1109_TGRS_2023_3295097
crossref_primary_10_3390_rs12152495
crossref_primary_10_1038_s41598_024_57891_5
crossref_primary_10_3390_rs15194855
crossref_primary_10_3390_rs15204994
crossref_primary_10_3390_rs15153900
crossref_primary_10_1007_s11277_021_08763_y
crossref_primary_10_1016_j_neucom_2021_05_051
crossref_primary_10_1109_TGRS_2021_3065507
crossref_primary_10_1371_journal_pone_0300013
crossref_primary_10_1109_TGRS_2024_3407952
crossref_primary_10_3390_s19071714
crossref_primary_10_1109_ACCESS_2024_3376258
crossref_primary_10_1109_TGRS_2022_3144158
crossref_primary_10_1109_JSTARS_2020_3041344
crossref_primary_10_1117_1_JRS_11_042613
crossref_primary_10_1016_j_knosys_2016_01_028
crossref_primary_10_3390_s22187074
crossref_primary_10_1016_j_meatsci_2020_108405
crossref_primary_10_1109_TGRS_2023_3255880
crossref_primary_10_1016_j_ecoinf_2022_101852
crossref_primary_10_3390_electronics12030488
crossref_primary_10_3390_s24216899
crossref_primary_10_3390_electronics10232893
crossref_primary_10_1109_TGRS_2021_3075546
crossref_primary_10_1109_TGRS_2024_3476327
crossref_primary_10_1016_j_infrared_2024_105401
crossref_primary_10_1109_TGRS_2019_2902568
crossref_primary_10_1063_5_0228645
crossref_primary_10_1117_1_JRS_11_042607
crossref_primary_10_1007_s11082_020_02671_4
crossref_primary_10_1080_20964471_2023_2273058
crossref_primary_10_3390_electronics12183879
crossref_primary_10_1117_1_JRS_11_042609
crossref_primary_10_1109_ACCESS_2024_3390558
crossref_primary_10_1007_s13042_022_01680_x
crossref_primary_10_1109_ACCESS_2020_2974025
crossref_primary_10_1109_TGRS_2023_3235819
crossref_primary_10_3390_app13042697
crossref_primary_10_1109_TGRS_2020_2999405
crossref_primary_10_1109_TGRS_2021_3050257
crossref_primary_10_1016_j_sab_2020_105850
crossref_primary_10_1109_JSTARS_2021_3128932
crossref_primary_10_52547_jgit_10_1_1
crossref_primary_10_2493_jjspe_84_958
crossref_primary_10_1109_TGRS_2021_3057066
crossref_primary_10_1049_ipr2_12330
crossref_primary_10_18287_2412_6179_CO_1038
crossref_primary_10_1080_00387010_2017_1354889
crossref_primary_10_1109_TGRS_2024_3379380
crossref_primary_10_1117_1_JRS_13_026512
crossref_primary_10_1109_TGRS_2021_3072454
crossref_primary_10_1007_s10664_019_09759_w
crossref_primary_10_1109_LGRS_2023_3303008
crossref_primary_10_1142_S0218488522400104
crossref_primary_10_1109_TIP_2023_3270104
crossref_primary_10_1145_3042064
crossref_primary_10_3390_s22228917
crossref_primary_10_3390_rs16071180
crossref_primary_10_3390_rs15112720
crossref_primary_10_1109_TIM_2021_3082274
crossref_primary_10_1007_s10916_018_1052_0
crossref_primary_10_1016_j_compag_2022_107343
crossref_primary_10_1117_1_JRS_13_038505
crossref_primary_10_3390_rs14133216
crossref_primary_10_1016_j_patcog_2017_09_007
crossref_primary_10_1080_01431161_2020_1823041
crossref_primary_10_1109_JSTARS_2023_3337112
crossref_primary_10_1109_JSTARS_2017_2655516
crossref_primary_10_1088_2632_2153_ad1d05
crossref_primary_10_1007_s44267_024_00038_x
crossref_primary_10_1109_TGRS_2022_3181501
crossref_primary_10_1109_LGRS_2018_2878773
crossref_primary_10_3390_rs13030498
crossref_primary_10_1109_TGRS_2016_2636241
crossref_primary_10_1109_TCYB_2022_3169773
crossref_primary_10_1109_JSTARS_2022_3232762
crossref_primary_10_1007_s10462_025_11169_y
crossref_primary_10_3390_rs11050484
crossref_primary_10_3390_rs14205122
crossref_primary_10_1109_TGRS_2022_3191541
crossref_primary_10_1080_01431161_2023_2224099
crossref_primary_10_1109_JSTARS_2024_3524443
crossref_primary_10_1109_TGRS_2019_2961947
crossref_primary_10_1109_TGRS_2023_3265879
crossref_primary_10_1109_TGRS_2022_3180685
crossref_primary_10_3390_rs13030464
crossref_primary_10_3389_fphy_2023_1159266
crossref_primary_10_3390_rs14030596
crossref_primary_10_1109_TIP_2022_3176537
crossref_primary_10_1109_TGRS_2022_3225438
crossref_primary_10_1109_TGRS_2023_3242776
crossref_primary_10_1109_JSTARS_2019_2957047
crossref_primary_10_1109_TGRS_2020_2987199
crossref_primary_10_1109_JSTARS_2021_3124321
crossref_primary_10_3390_app15020503
crossref_primary_10_1007_s10661_022_10118_4
crossref_primary_10_1007_s41060_023_00450_4
crossref_primary_10_1016_j_irbm_2021_06_009
crossref_primary_10_1109_TGRS_2021_3110601
crossref_primary_10_1088_1742_6596_1916_1_012029
crossref_primary_10_1109_ACCESS_2022_3232152
crossref_primary_10_1109_TGRS_2019_2946318
crossref_primary_10_1080_07038992_2020_1870217
crossref_primary_10_1109_TGRS_2019_2923213
crossref_primary_10_3390_rs14205118
crossref_primary_10_1109_TGRS_2023_3324947
crossref_primary_10_3390_rs13112216
crossref_primary_10_1109_TGRS_2023_3274778
crossref_primary_10_1088_1674_1056_ac8cd7
crossref_primary_10_2112_SI99_007_1
crossref_primary_10_1109_JSTARS_2021_3133009
crossref_primary_10_1109_LGRS_2023_3277347
crossref_primary_10_1049_cvi2_12218
crossref_primary_10_3390_su15097653
crossref_primary_10_1016_j_infrared_2023_104983
crossref_primary_10_1109_JSTARS_2021_3074469
crossref_primary_10_17482_uumfd_435723
crossref_primary_10_1134_S1054661819010085
crossref_primary_10_1109_JSTARS_2024_3455561
crossref_primary_10_1109_LGRS_2017_2657818
crossref_primary_10_1002_sam_11455
crossref_primary_10_1109_TGRS_2024_3430985
crossref_primary_10_3390_rs14051230
crossref_primary_10_3390_rs15133223
crossref_primary_10_52547_jgit_9_2_1
crossref_primary_10_1080_22797254_2018_1434424
crossref_primary_10_1109_JSTARS_2020_3008949
crossref_primary_10_1007_s11069_020_04264_6
crossref_primary_10_3390_rs13122268
crossref_primary_10_1080_01431161_2024_2343132
crossref_primary_10_1109_TGRS_2023_3241681
crossref_primary_10_1080_01431161_2024_2343133
crossref_primary_10_1109_JSTARS_2022_3192470
crossref_primary_10_1109_TGRS_2018_2818945
crossref_primary_10_1049_ipr2_12382
crossref_primary_10_1016_j_pce_2022_103286
crossref_primary_10_1016_j_ejrs_2023_09_002
crossref_primary_10_1016_j_foreco_2021_119493
crossref_primary_10_1080_07038992_2021_1926952
crossref_primary_10_3390_fi14010019
crossref_primary_10_3390_cancers11060756
crossref_primary_10_1109_TNNLS_2023_3264587
crossref_primary_10_3788_LOP240688
crossref_primary_10_3390_rs15030752
crossref_primary_10_1016_j_isprsjprs_2017_11_021
crossref_primary_10_1117_1_JRS_12_026028
crossref_primary_10_3390_electronics12030674
crossref_primary_10_3390_s23052856
crossref_primary_10_1364_OE_437717
crossref_primary_10_1109_LGRS_2024_3424986
crossref_primary_10_3390_rs13122253
crossref_primary_10_1109_TGRS_2024_3522110
crossref_primary_10_1109_TIP_2021_3118977
crossref_primary_10_1007_s12145_024_01415_2
crossref_primary_10_1109_TGRS_2017_2705073
crossref_primary_10_1117_1_JRS_12_016005
crossref_primary_10_3390_molecules23112831
crossref_primary_10_1016_j_yebeh_2024_110165
crossref_primary_10_3390_rs13214262
crossref_primary_10_3390_s22072687
crossref_primary_10_3390_electronics14040797
crossref_primary_10_1109_TGRS_2018_2827407
crossref_primary_10_1109_TGRS_2024_3367374
crossref_primary_10_1016_j_jvcir_2018_10_009
crossref_primary_10_1109_TIP_2017_2725580
crossref_primary_10_3390_agronomy13071723
crossref_primary_10_1080_01431161_2023_2249598
crossref_primary_10_1080_2150704X_2019_1686780
crossref_primary_10_1109_TGRS_2019_2893180
crossref_primary_10_1109_TGRS_2022_3199467
crossref_primary_10_1109_TGRS_2024_3367127
crossref_primary_10_1049_iet_com_2019_0687
crossref_primary_10_1109_TGRS_2018_2860464
crossref_primary_10_1109_TGRS_2023_3324977
crossref_primary_10_1007_s10278_019_00204_4
crossref_primary_10_3390_app14062327
crossref_primary_10_1109_TGRS_2024_3475635
crossref_primary_10_1109_TGRS_2023_3318071
crossref_primary_10_1007_s42401_022_00168_4
crossref_primary_10_1109_TGRS_2017_2756851
crossref_primary_10_3390_rs9030225
crossref_primary_10_3390_rs14236158
crossref_primary_10_3390_s20226666
crossref_primary_10_1016_j_ress_2020_107316
crossref_primary_10_1109_TGRS_2023_3242978
crossref_primary_10_1109_TGRS_2023_3275871
crossref_primary_10_3390_rs15051206
crossref_primary_10_1109_TGRS_2020_3022029
crossref_primary_10_1016_j_isprsjprs_2017_11_003
crossref_primary_10_1016_j_rse_2019_111350
crossref_primary_10_1016_j_neunet_2025_107311
crossref_primary_10_1109_JSTARS_2019_2898574
crossref_primary_10_1109_LGRS_2016_2608963
crossref_primary_10_1016_j_isprsjprs_2021_02_009
crossref_primary_10_1080_2150704X_2017_1331053
crossref_primary_10_3788_LOP230974
crossref_primary_10_1109_TGRS_2022_3225947
crossref_primary_10_3390_rs15040983
crossref_primary_10_32604_cmc_2023_031673
crossref_primary_10_1007_s11042_022_11954_9
crossref_primary_10_1117_1_JRS_12_016024
crossref_primary_10_1007_s11042_022_12633_5
crossref_primary_10_1080_17538947_2022_2108922
crossref_primary_10_1080_01431161_2021_1995074
crossref_primary_10_1109_JSTARS_2020_3046053
crossref_primary_10_1109_TGRS_2022_3153446
crossref_primary_10_1109_TGRS_2023_3237668
crossref_primary_10_1080_01431161_2019_1694194
crossref_primary_10_3390_rs11111307
crossref_primary_10_1109_TGRS_2022_3165441
crossref_primary_10_1109_TII_2024_3384609
crossref_primary_10_1109_JSTARS_2019_2915588
crossref_primary_10_3169_mta_12_190
crossref_primary_10_1109_TGRS_2025_3545949
crossref_primary_10_3390_s18071992
crossref_primary_10_1109_TGRS_2021_3079123
crossref_primary_10_3390_rs15153793
crossref_primary_10_3390_rs15153792
crossref_primary_10_1109_JSTARS_2024_3487360
crossref_primary_10_3390_rs12091489
crossref_primary_10_1109_TGRS_2021_3092351
crossref_primary_10_1016_j_ins_2017_08_051
crossref_primary_10_1109_TGRS_2022_3198130
crossref_primary_10_1080_22797254_2022_2075794
crossref_primary_10_1109_TGRS_2020_3026099
crossref_primary_10_3390_rs13163165
crossref_primary_10_1109_TGRS_2022_3207294
crossref_primary_10_1109_TIM_2023_3344142
crossref_primary_10_1109_LGRS_2023_3287188
crossref_primary_10_1109_TGRS_2022_3164341
crossref_primary_10_1109_TGRS_2024_3456129
crossref_primary_10_1109_TGRS_2024_3433025
crossref_primary_10_32604_cmc_2021_015605
crossref_primary_10_3390_rs12020280
crossref_primary_10_35193_bseufbd_741729
crossref_primary_10_1155_2017_2157243
crossref_primary_10_1080_2150704X_2021_1978582
crossref_primary_10_1109_JSTARS_2025_3527898
crossref_primary_10_1109_LGRS_2024_3409553
crossref_primary_10_1016_j_scs_2022_104032
crossref_primary_10_1117_1_JRS_12_016040
crossref_primary_10_1007_s11042_023_16456_w
crossref_primary_10_1109_TGRS_2022_3232498
crossref_primary_10_3390_rs16234381
crossref_primary_10_1109_TGRS_2024_3409378
crossref_primary_10_1051_e3sconf_201914005012
crossref_primary_10_3390_rs15030720
crossref_primary_10_1109_JSTARS_2020_3035382
crossref_primary_10_3390_rs11080963
crossref_primary_10_1080_01431161_2024_2398822
crossref_primary_10_3390_rs16091615
crossref_primary_10_1155_2018_8602103
crossref_primary_10_26599_BDMA_2024_9020086
crossref_primary_10_1016_j_ejrs_2024_11_001
crossref_primary_10_1109_JSTARS_2024_3432743
crossref_primary_10_1109_TGRS_2023_3282247
crossref_primary_10_3390_rs10050783
crossref_primary_10_1080_01490419_2025_2478977
crossref_primary_10_1049_cit2_12181
crossref_primary_10_3390_s17020314
crossref_primary_10_1109_TGRS_2024_3390575
crossref_primary_10_1117_1_JRS_14_036519
crossref_primary_10_1049_ipr2_12632
crossref_primary_10_3390_rs16193730
crossref_primary_10_1109_TGRS_2023_3272639
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1109_TIP_2024_3465038
crossref_primary_10_3390_rs13071269
crossref_primary_10_1109_JSTARS_2018_2844873
crossref_primary_10_1109_TGRS_2021_3084922
crossref_primary_10_1080_25726838_2019_1578031
crossref_primary_10_1109_JSTARS_2022_3187972
crossref_primary_10_1109_JSTARS_2022_3162423
crossref_primary_10_1109_TGRS_2022_3213513
crossref_primary_10_3390_electronics12245013
crossref_primary_10_1080_10106049_2023_2226112
crossref_primary_10_1080_01431161_2022_2142078
crossref_primary_10_1109_TGRS_2023_3321840
crossref_primary_10_3390_drones7040240
crossref_primary_10_3390_rs12193137
crossref_primary_10_1109_TGRS_2023_3303338
crossref_primary_10_3390_rs13132451
crossref_primary_10_1109_ACCESS_2023_3250447
crossref_primary_10_3390_f14030601
crossref_primary_10_1016_j_aca_2023_342158
crossref_primary_10_1016_j_asr_2024_08_049
crossref_primary_10_1109_TGRS_2020_3046757
crossref_primary_10_1007_s11042_022_12494_y
crossref_primary_10_1109_TGRS_2022_3212682
crossref_primary_10_3390_app11188670
crossref_primary_10_1016_j_cviu_2024_104198
crossref_primary_10_3788_IRLA20240215
crossref_primary_10_1109_JSTARS_2023_3282975
crossref_primary_10_1016_j_neucom_2024_128877
crossref_primary_10_1109_JSTARS_2018_2886288
crossref_primary_10_3390_rs14194866
crossref_primary_10_1007_s00521_020_05069_1
crossref_primary_10_1109_TGRS_2019_2951160
crossref_primary_10_1109_TGRS_2022_3207098
crossref_primary_10_1016_j_paerosci_2023_100960
crossref_primary_10_1109_TGRS_2019_2910603
crossref_primary_10_1109_TGRS_2024_3370919
crossref_primary_10_1142_S1469026817500018
crossref_primary_10_1007_s10619_020_07309_8
crossref_primary_10_1109_LGRS_2022_3228531
crossref_primary_10_1016_j_compag_2021_106521
crossref_primary_10_1073_pnas_1719367115
crossref_primary_10_1109_ACCESS_2020_3008029
crossref_primary_10_1109_LGRS_2024_3431644
crossref_primary_10_1109_TIP_2025_3531709
crossref_primary_10_1109_TGRS_2023_3328263
crossref_primary_10_3390_rs16122152
crossref_primary_10_3390_s22176611
crossref_primary_10_1080_01431161_2021_2019851
crossref_primary_10_1007_s12303_020_0022_y
crossref_primary_10_1080_10106049_2021_1953616
crossref_primary_10_3390_jimaging5050052
crossref_primary_10_1016_j_eswa_2021_115280
crossref_primary_10_1080_01431161_2021_2019849
crossref_primary_10_1109_TGRS_2023_3303319
crossref_primary_10_1109_ACCESS_2025_3543122
crossref_primary_10_1109_TGRS_2022_3203980
crossref_primary_10_1109_TGRS_2021_3087186
crossref_primary_10_1109_JSTARS_2021_3065687
crossref_primary_10_1109_LGRS_2019_2962582
crossref_primary_10_1109_JSTARS_2019_2938208
crossref_primary_10_1016_j_rse_2021_112665
crossref_primary_10_3390_rs15174255
crossref_primary_10_1016_j_jag_2023_103614
crossref_primary_10_1109_LGRS_2020_3024006
crossref_primary_10_1080_15481603_2018_1457201
crossref_primary_10_1109_TGRS_2022_3210280
crossref_primary_10_1007_s11263_024_02238_w
crossref_primary_10_1016_j_cosrev_2024_100658
crossref_primary_10_1016_j_patcog_2019_04_009
crossref_primary_10_1109_TGRS_2020_3044312
crossref_primary_10_1109_TGRS_2023_3272885
crossref_primary_10_1109_ACCESS_2022_3194650
crossref_primary_10_1109_TGRS_2022_3141217
crossref_primary_10_3390_rs10020284
crossref_primary_10_1016_j_scitotenv_2023_163677
crossref_primary_10_1016_j_patrec_2018_10_003
crossref_primary_10_1109_ACCESS_2021_3095265
crossref_primary_10_1109_ACCESS_2020_2973856
crossref_primary_10_1109_TGRS_2020_3011429
crossref_primary_10_36548_jiip_2023_4_002
crossref_primary_10_1109_TGRS_2024_3353383
crossref_primary_10_3390_rs11202363
crossref_primary_10_1109_JSTARS_2020_2983224
crossref_primary_10_3390_rs15153701
crossref_primary_10_1002_cpe_6533
crossref_primary_10_3788_gzxb20235212_1210002
crossref_primary_10_3390_rs13040718
crossref_primary_10_1007_s11042_022_13476_w
crossref_primary_10_1109_TGRS_2021_3100578
crossref_primary_10_3390_s20143961
crossref_primary_10_1109_LGRS_2021_3089278
crossref_primary_10_3390_rs9060629
crossref_primary_10_1007_s12517_022_10246_8
crossref_primary_10_1016_j_jcmds_2022_100070
crossref_primary_10_1016_j_saa_2022_121418
crossref_primary_10_3389_fmars_2024_1455604
crossref_primary_10_1109_TGRS_2024_3487296
crossref_primary_10_1080_2150704X_2019_1681598
crossref_primary_10_3390_rs12121964
crossref_primary_10_1007_s00146_019_00934_7
crossref_primary_10_3390_molecules27186042
crossref_primary_10_1109_JSTARS_2020_2968930
crossref_primary_10_3389_frsen_2024_1374862
crossref_primary_10_1109_TGRS_2021_3052048
crossref_primary_10_3390_s24206647
crossref_primary_10_1049_iet_ipr_2017_1375
crossref_primary_10_1016_j_rsase_2023_100986
crossref_primary_10_1007_s11063_018_9876_7
crossref_primary_10_1109_TGRS_2020_3014286
crossref_primary_10_1117_1_JRS_17_038503
crossref_primary_10_1093_pnasnexus_pgac164
crossref_primary_10_3390_rs16122185
crossref_primary_10_1038_s41598_025_90926_z
crossref_primary_10_1080_01431161_2025_2457130
crossref_primary_10_1109_TGRS_2019_2899129
crossref_primary_10_1007_s13042_022_01767_5
crossref_primary_10_1109_LGRS_2023_3236672
crossref_primary_10_3390_s17102421
crossref_primary_10_1080_01431161_2024_2318767
crossref_primary_10_1109_TGRS_2023_3334289
crossref_primary_10_1007_s10043_019_00528_0
crossref_primary_10_1109_TGRS_2020_3018879
crossref_primary_10_3390_rs14010053
crossref_primary_10_33793_acperpro_03_01_89
crossref_primary_10_1109_TGRS_2018_2863224
crossref_primary_10_1007_s11227_025_07096_y
crossref_primary_10_1109_JSTARS_2022_3173349
crossref_primary_10_1109_TGRS_2022_3196311
crossref_primary_10_1109_JSTARS_2018_2836671
crossref_primary_10_3390_s20236936
crossref_primary_10_1109_TGRS_2022_3147198
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_1109_TGRS_2021_3066485
crossref_primary_10_1080_01431161_2019_1597310
crossref_primary_10_1007_s11063_024_11631_y
crossref_primary_10_3390_rs13173393
crossref_primary_10_3390_rs13163117
crossref_primary_10_3390_rs15184471
crossref_primary_10_1109_TGRS_2020_2973363
crossref_primary_10_1109_TGRS_2022_3140324
crossref_primary_10_1016_j_gexplo_2024_107611
crossref_primary_10_1080_10106049_2021_1882006
crossref_primary_10_3390_rs11131566
crossref_primary_10_3390_rs15163960
crossref_primary_10_1109_TGRS_2022_3184117
crossref_primary_10_1080_01431161_2019_1615652
crossref_primary_10_1109_LGRS_2020_2989437
crossref_primary_10_1109_TGRS_2019_2908756
crossref_primary_10_1007_s12161_023_02459_8
crossref_primary_10_3390_rs11131565
crossref_primary_10_3390_ijgi6110344
crossref_primary_10_1109_TGRS_2020_2964627
crossref_primary_10_1155_2022_7071485
crossref_primary_10_1109_JSTARS_2020_2974577
crossref_primary_10_3390_rs16010022
crossref_primary_10_1016_j_saa_2024_124295
crossref_primary_10_1109_JSTARS_2021_3056124
crossref_primary_10_1038_s41598_024_56491_7
crossref_primary_10_1109_ACCESS_2020_3004968
crossref_primary_10_1109_TGRS_2024_3502055
crossref_primary_10_3390_rs15184412
crossref_primary_10_1155_2017_5169675
crossref_primary_10_61186_jgit_11_1_59
crossref_primary_10_1109_JSTARS_2024_3492351
crossref_primary_10_1109_TGRS_2022_3221534
crossref_primary_10_3390_mining4040057
crossref_primary_10_1109_TGRS_2022_3169163
crossref_primary_10_1109_JSTARS_2023_3342461
crossref_primary_10_1109_TGRS_2020_3018449
crossref_primary_10_1109_ACCESS_2019_2923776
crossref_primary_10_3390_rs15123084
crossref_primary_10_34133_plantphenomics_0129
crossref_primary_10_1109_TGRS_2021_3138742
crossref_primary_10_1109_LGRS_2022_3206917
crossref_primary_10_1109_JSTARS_2022_3226758
crossref_primary_10_1109_JSTARS_2022_3145917
crossref_primary_10_1109_JSTARS_2025_3533211
crossref_primary_10_1016_j_neucom_2021_07_015
crossref_primary_10_1016_j_ins_2019_10_069
crossref_primary_10_1109_MGRS_2019_2912563
crossref_primary_10_1109_TNNLS_2023_3340561
crossref_primary_10_3390_electronics13020262
crossref_primary_10_1109_LGRS_2024_3494552
crossref_primary_10_3390_s24227131
crossref_primary_10_1155_2020_8065396
crossref_primary_10_1109_JSTARS_2020_3024841
crossref_primary_10_1109_TIP_2022_3144017
crossref_primary_10_3390_rs15153721
crossref_primary_10_1109_TGRS_2017_2783886
crossref_primary_10_1109_TGRS_2025_3542422
crossref_primary_10_3390_jimaging6120132
crossref_primary_10_3390_f15040691
crossref_primary_10_3390_rs16162892
crossref_primary_10_1016_j_infrared_2024_105251
crossref_primary_10_1109_LGRS_2023_3323706
crossref_primary_10_1016_j_geoderma_2021_115366
crossref_primary_10_1016_j_ins_2021_07_043
crossref_primary_10_1109_LGRS_2019_2916083
crossref_primary_10_1109_LGRS_2019_2945848
crossref_primary_10_1109_JSTARS_2022_3185125
crossref_primary_10_1109_TGRS_2024_3468311
crossref_primary_10_1109_JSTARS_2021_3115129
crossref_primary_10_3390_rs16060937
crossref_primary_10_1109_TIM_2023_3293548
crossref_primary_10_1016_j_foodcont_2020_107332
crossref_primary_10_3390_min13060766
crossref_primary_10_1080_1206212X_2024_2441147
crossref_primary_10_1109_JSTARS_2024_3371909
crossref_primary_10_3390_app9204312
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_30897_ijegeo_684951
crossref_primary_10_3390_app13010492
crossref_primary_10_1016_j_infrared_2020_103340
crossref_primary_10_1016_j_eswa_2022_117342
crossref_primary_10_1109_TGRS_2023_3254159
crossref_primary_10_1109_TGRS_2023_3279437
crossref_primary_10_3103_S0146411618060123
crossref_primary_10_1109_TIM_2018_2887069
crossref_primary_10_1080_00387010_2022_2076698
crossref_primary_10_1080_2150704X_2019_1579936
crossref_primary_10_3390_rs16244788
crossref_primary_10_3390_pr11020435
crossref_primary_10_1109_JSTARS_2019_2900705
crossref_primary_10_1016_j_ejrs_2020_08_001
crossref_primary_10_1080_2150704X_2017_1420265
crossref_primary_10_1109_TGRS_2022_3223508
crossref_primary_10_1109_JSTARS_2024_3422078
crossref_primary_10_1109_JSTARS_2023_3328389
crossref_primary_10_1109_TGRS_2023_3281511
crossref_primary_10_3390_rs16020287
crossref_primary_10_3390_rs14030608
crossref_primary_10_1109_TGRS_2020_3014313
crossref_primary_10_1016_j_neucom_2019_05_019
crossref_primary_10_32604_iasc_2023_029923
crossref_primary_10_3390_rs15071803
crossref_primary_10_1109_TPAMI_2024_3399753
crossref_primary_10_3390_rs12030547
crossref_primary_10_1016_j_infrared_2020_103296
crossref_primary_10_3390_rs16010067
crossref_primary_10_1109_JSTARS_2023_3328115
crossref_primary_10_1080_2150704X_2019_1635287
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_3390_diagnostics12092225
crossref_primary_10_3390_rs11182170
crossref_primary_10_1016_j_gsme_2024_09_003
crossref_primary_10_1109_JSTARS_2022_3233125
crossref_primary_10_3390_rs13183561
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_1109_JSTARS_2023_3283342
crossref_primary_10_1080_22797254_2021_1942225
crossref_primary_10_1109_JSTARS_2023_3321965
crossref_primary_10_1109_TGRS_2023_3310489
crossref_primary_10_3390_rs14174288
crossref_primary_10_1080_01431161_2024_2305179
crossref_primary_10_1080_01431161_2023_2171744
crossref_primary_10_1080_01431161_2023_2171742
crossref_primary_10_2196_67256
crossref_primary_10_1016_j_sigpro_2019_107361
crossref_primary_10_3390_rs14246406
crossref_primary_10_1016_j_procs_2024_04_241
crossref_primary_10_1016_j_jfranklin_2025_107532
crossref_primary_10_1109_TGRS_2024_3369075
crossref_primary_10_1109_TGRS_2024_3397740
crossref_primary_10_3390_rs14153555
crossref_primary_10_3390_rs14153796
crossref_primary_10_3390_rs13081568
crossref_primary_10_3390_rs15194796
crossref_primary_10_1109_ACCESS_2022_3231579
crossref_primary_10_3390_rs13183590
crossref_primary_10_1117_1_JRS_12_035003
crossref_primary_10_1142_S0219467823500365
crossref_primary_10_1109_TGRS_2020_3005623
crossref_primary_10_1109_TGRS_2023_3314616
crossref_primary_10_3390_s24237683
crossref_primary_10_1016_j_rse_2019_05_023
crossref_primary_10_1080_19479832_2024_2425710
crossref_primary_10_1109_TGRS_2020_2999957
crossref_primary_10_1364_AO_420688
crossref_primary_10_3390_rs15133366
crossref_primary_10_3390_rs15020428
crossref_primary_10_1109_TGRS_2023_3332051
crossref_primary_10_1016_j_eswa_2021_114708
crossref_primary_10_3390_rs12203408
crossref_primary_10_3390_rs13020162
crossref_primary_10_1109_ACCESS_2022_3188853
crossref_primary_10_1016_j_infrared_2024_105569
crossref_primary_10_3390_rs12030536
crossref_primary_10_1049_ipr2_12087
crossref_primary_10_1109_TGRS_2023_3308123
crossref_primary_10_1109_TGRS_2024_3445935
crossref_primary_10_1109_LGRS_2019_2923647
crossref_primary_10_1007_s12204_023_2645_4
crossref_primary_10_3390_rs13173547
crossref_primary_10_1080_01431161_2020_1734249
crossref_primary_10_1016_j_eswa_2023_119508
crossref_primary_10_1016_j_microc_2024_109981
crossref_primary_10_1109_TGRS_2016_2616355
crossref_primary_10_3390_rs11091044
crossref_primary_10_1109_TGRS_2020_2987905
crossref_primary_10_3390_rs15225331
crossref_primary_10_1109_TIP_2022_3192712
crossref_primary_10_1109_ACCESS_2020_2999865
crossref_primary_10_1007_s10776_019_00440_z
crossref_primary_10_1080_22797254_2019_1634980
crossref_primary_10_3233_JIFS_169918
crossref_primary_10_3390_s20185322
crossref_primary_10_1109_LGRS_2017_2786272
crossref_primary_10_3390_rs12142335
crossref_primary_10_3390_rs16163002
crossref_primary_10_1109_TGRS_2022_3149947
crossref_primary_10_1109_TGRS_2024_3352812
crossref_primary_10_3390_rs11050546
crossref_primary_10_3390_rs14174235
crossref_primary_10_1016_j_jag_2022_102906
crossref_primary_10_1109_TIP_2022_3177322
crossref_primary_10_1109_JBHI_2019_2905623
crossref_primary_10_1109_JSTARS_2022_3225928
crossref_primary_10_1016_j_compag_2024_109576
crossref_primary_10_1255_jsi_2021_a2
crossref_primary_10_3390_a13030061
crossref_primary_10_1080_05704928_2021_1999252
crossref_primary_10_1109_LGRS_2020_3045744
crossref_primary_10_1371_journal_pone_0293303
crossref_primary_10_1016_j_micron_2019_102798
crossref_primary_10_3390_rs15123123
crossref_primary_10_1109_TIP_2017_2772836
crossref_primary_10_1364_JOSAA_478585
crossref_primary_10_1109_TGRS_2024_3488202
crossref_primary_10_1109_TGRS_2021_3133454
crossref_primary_10_3390_rs12101620
crossref_primary_10_1080_1573062X_2023_2255168
crossref_primary_10_1109_TGRS_2024_3440271
crossref_primary_10_1016_j_neucom_2022_06_031
crossref_primary_10_1016_j_rse_2020_111938
crossref_primary_10_3934_mfc_2021003
crossref_primary_10_1109_TNNLS_2023_3345734
crossref_primary_10_3390_rs15051399
crossref_primary_10_3390_app9224890
crossref_primary_10_1021_acs_analchem_8b05962
crossref_primary_10_1039_D1RA07662K
crossref_primary_10_1109_TGRS_2024_3472091
crossref_primary_10_1109_TGRS_2020_3013285
crossref_primary_10_1109_LGRS_2021_3084203
crossref_primary_10_3390_app14051701
crossref_primary_10_1109_TGRS_2019_2957135
crossref_primary_10_1109_TGRS_2017_2689018
crossref_primary_10_3390_s23115148
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_3390_w15203557
crossref_primary_10_3390_rs14071569
crossref_primary_10_3390_rs14225778
crossref_primary_10_1109_JSTARS_2024_3403863
crossref_primary_10_1080_17538947_2023_2229793
crossref_primary_10_3390_rs14092265
crossref_primary_10_1109_TGRS_2021_3123423
crossref_primary_10_1109_TGRS_2023_3284074
crossref_primary_10_3233_ICA_210657
crossref_primary_10_1016_j_ijleo_2022_169527
crossref_primary_10_1007_s12517_021_07791_z
crossref_primary_10_1109_TGRS_2024_3351997
crossref_primary_10_1109_TGRS_2024_3361555
crossref_primary_10_1109_TGRS_2020_3048128
crossref_primary_10_3390_rs14246224
crossref_primary_10_1109_TSC_2019_2916416
crossref_primary_10_1109_MGRS_2022_3169947
crossref_primary_10_1109_TGRS_2023_3264235
crossref_primary_10_3390_plants8110468
crossref_primary_10_1016_j_aiia_2024_10_002
crossref_primary_10_1016_j_compag_2022_107474
crossref_primary_10_1109_TGRS_2023_3244805
crossref_primary_10_1109_TGRS_2018_2872830
crossref_primary_10_1049_iet_ipr_2019_0869
crossref_primary_10_1109_JSTARS_2024_3355071
crossref_primary_10_3390_plants13202876
crossref_primary_10_3390_s17061341
crossref_primary_10_1007_s40860_020_00099_x
crossref_primary_10_1007_s11042_023_15017_5
crossref_primary_10_1111_coin_12611
crossref_primary_10_3389_feart_2022_988556
crossref_primary_10_3390_s18093153
crossref_primary_10_3390_s18093169
crossref_primary_10_3390_rs14205251
crossref_primary_10_1109_JSTARS_2021_3103744
crossref_primary_10_3390_rs11161896
crossref_primary_10_1016_j_patrec_2021_01_015
crossref_primary_10_1109_TGRS_2017_2675902
crossref_primary_10_1007_s11042_020_10169_0
crossref_primary_10_1016_j_isprsjprs_2018_05_014
crossref_primary_10_3390_rs16214055
crossref_primary_10_1080_01431161_2022_2089069
crossref_primary_10_1155_2024_5926658
crossref_primary_10_1109_TIM_2023_3279922
crossref_primary_10_1016_j_rse_2019_111411
crossref_primary_10_48130_TIH_2023_0027
crossref_primary_10_1177_1729881419842991
crossref_primary_10_1155_2020_9765975
crossref_primary_10_1364_OE_446767
crossref_primary_10_3390_s24237834
crossref_primary_10_1109_LGRS_2022_3224933
crossref_primary_10_1080_2150704X_2019_1569274
crossref_primary_10_1109_TGRS_2024_3493387
crossref_primary_10_1109_TNNLS_2022_3155114
crossref_primary_10_3390_ijgi8090417
crossref_primary_10_3390_rs14112612
crossref_primary_10_3390_diagnostics11081508
crossref_primary_10_3103_S1060992X24700668
crossref_primary_10_3390_rs13214342
crossref_primary_10_1109_TGRS_2018_2837142
crossref_primary_10_1016_j_engappai_2023_106993
crossref_primary_10_3390_fire6100395
crossref_primary_10_3390_rs13020324
crossref_primary_10_1007_s11042_018_5714_1
crossref_primary_10_3390_s19071486
crossref_primary_10_1007_s10489_024_06139_w
crossref_primary_10_3390_rs14194732
crossref_primary_10_1080_01431161_2016_1159745
crossref_primary_10_3390_rs13132599
crossref_primary_10_1109_TGRS_2020_3046780
crossref_primary_10_1016_j_knosys_2020_106319
crossref_primary_10_1016_j_acags_2020_100034
crossref_primary_10_1109_MGRS_2016_2540798
crossref_primary_10_1364_OE_550150
crossref_primary_10_3390_rs12101640
crossref_primary_10_1109_TGRS_2023_3304836
crossref_primary_10_1109_TGRS_2022_3187187
crossref_primary_10_1364_OE_27_023029
crossref_primary_10_1109_TNNLS_2023_3265560
crossref_primary_10_1080_2150704X_2024_2320177
crossref_primary_10_1109_JSTSP_2021_3063805
crossref_primary_10_1155_2021_5592614
crossref_primary_10_1007_s41870_022_01075_9
crossref_primary_10_1109_TGRS_2018_2827308
crossref_primary_10_1080_15481603_2018_1426091
crossref_primary_10_1109_LGRS_2022_3185743
crossref_primary_10_1109_TNNLS_2020_3028945
crossref_primary_10_3390_rs14194910
crossref_primary_10_1117_1_JEI_32_2_021610
crossref_primary_10_3390_rs16214001
crossref_primary_10_1109_TGRS_2020_3047682
crossref_primary_10_1016_j_knosys_2019_105122
crossref_primary_10_3390_ijgi7090349
crossref_primary_10_1109_TGRS_2023_3317079
crossref_primary_10_1117_1_JRS_14_048504
crossref_primary_10_1109_ACCESS_2019_2925283
crossref_primary_10_1007_s11069_024_06764_1
crossref_primary_10_3390_rs14112678
crossref_primary_10_1186_s13638_019_1594_y
crossref_primary_10_1109_MGRS_2017_2762307
crossref_primary_10_3390_rs14236017
crossref_primary_10_1109_ACCESS_2022_3201537
crossref_primary_10_1109_TGRS_2023_3301310
crossref_primary_10_3390_s24144714
crossref_primary_10_1109_JSTARS_2020_3042959
crossref_primary_10_1109_TGRS_2020_3045273
crossref_primary_10_3390_rs15112879
crossref_primary_10_1109_TGRS_2022_3207933
crossref_primary_10_3390_rs13030335
crossref_primary_10_3390_rs11192326
crossref_primary_10_1117_1_JEI_26_2_023012
crossref_primary_10_1109_TGRS_2023_3298848
crossref_primary_10_1007_s44196_023_00370_y
crossref_primary_10_1109_TGRS_2018_2838665
crossref_primary_10_1016_j_scitotenv_2024_176630
crossref_primary_10_1155_2021_9938584
crossref_primary_10_3390_agronomy11081554
crossref_primary_10_1080_22797254_2024_2330979
crossref_primary_10_1007_s41019_020_00126_0
crossref_primary_10_2139_ssrn_4162664
crossref_primary_10_1049_iet_ipr_2018_5727
crossref_primary_10_1109_TIP_2024_3522809
crossref_primary_10_1109_TGRS_2020_3048994
crossref_primary_10_3390_rs14112653
crossref_primary_10_1109_TGRS_2023_3300688
crossref_primary_10_1007_s10846_022_01602_7
crossref_primary_10_1080_22797254_2021_2010605
crossref_primary_10_3390_s20185191
crossref_primary_10_1109_TGRS_2019_2921342
crossref_primary_10_1109_LGRS_2022_3172410
crossref_primary_10_1109_TGRS_2024_3477933
crossref_primary_10_1109_ACCESS_2020_2986514
crossref_primary_10_1109_JSTARS_2025_3529985
crossref_primary_10_3390_rs10122036
crossref_primary_10_3390_rs14030657
crossref_primary_10_1080_01431161_2022_2109222
crossref_primary_10_1109_TGRS_2020_3034133
crossref_primary_10_1016_j_jag_2022_102744
crossref_primary_10_1109_TGRS_2024_3443953
crossref_primary_10_1109_TGRS_2018_2841823
crossref_primary_10_3390_rs11030223
crossref_primary_10_3390_rs14164066
crossref_primary_10_1016_j_asr_2023_04_025
crossref_primary_10_3390_en17071628
crossref_primary_10_1109_TGRS_2017_2693346
crossref_primary_10_1007_s00371_024_03728_1
crossref_primary_10_3390_rs14030666
crossref_primary_10_3390_rs13122353
crossref_primary_10_3390_rs15133338
crossref_primary_10_1109_JSTARS_2021_3063679
crossref_primary_10_1155_2022_7549397
crossref_primary_10_1016_j_cageo_2020_104519
crossref_primary_10_1109_TGRS_2018_2875943
crossref_primary_10_3390_rs16030592
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1016_j_jag_2022_103005
crossref_primary_10_1109_LGRS_2022_3182156
crossref_primary_10_1016_j_sigpro_2023_109153
crossref_primary_10_3390_rs12203294
crossref_primary_10_3390_rs12203292
crossref_primary_10_3934_mbe_2020195
crossref_primary_10_1109_TGRS_2022_3213838
crossref_primary_10_3390_rs13163055
crossref_primary_10_1016_j_rse_2024_114314
crossref_primary_10_1109_TGRS_2023_3286950
crossref_primary_10_1109_TGRS_2021_3058549
crossref_primary_10_3390_rs14184523
crossref_primary_10_1109_TGRS_2021_3058321
crossref_primary_10_3390_rs14215334
crossref_primary_10_1109_TIP_2024_3492724
crossref_primary_10_1016_j_sigpro_2024_109669
crossref_primary_10_1364_BOE_455208
crossref_primary_10_1117_1_JBO_22_6_060503
crossref_primary_10_1088_1742_6596_2273_1_012028
crossref_primary_10_1109_JSTARS_2025_3530935
crossref_primary_10_1109_TIP_2018_2799324
crossref_primary_10_1109_TGRS_2021_3073932
crossref_primary_10_1109_TGRS_2019_2934760
crossref_primary_10_1016_j_softx_2023_101340
crossref_primary_10_1109_TGRS_2020_3046840
crossref_primary_10_3390_su151813786
crossref_primary_10_1109_TIM_2023_3277100
crossref_primary_10_1109_JSTARS_2023_3290678
crossref_primary_10_1109_ACCESS_2023_3253627
crossref_primary_10_1109_JSTARS_2021_3101511
crossref_primary_10_1109_TGRS_2024_3361906
crossref_primary_10_3390_rs11202454
crossref_primary_10_3390_rs16224225
crossref_primary_10_1016_j_dsp_2021_103016
crossref_primary_10_3390_jmse11071265
crossref_primary_10_1038_s41598_022_25735_9
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_3390_rs15051302
crossref_primary_10_1080_17538947_2021_2017035
crossref_primary_10_1109_JSTARS_2024_3440254
crossref_primary_10_1109_JSTARS_2021_3099118
crossref_primary_10_1109_TAES_2018_2883879
crossref_primary_10_1109_TGRS_2019_2900509
crossref_primary_10_1016_j_eswa_2019_04_006
crossref_primary_10_1109_JSTARS_2018_2866595
crossref_primary_10_1109_JSTARS_2021_3121334
crossref_primary_10_1109_LGRS_2019_2951372
crossref_primary_10_1007_s11042_021_11015_7
crossref_primary_10_1109_TGRS_2021_3102034
crossref_primary_10_1109_TPS_2023_3297579
crossref_primary_10_3390_rs12091395
crossref_primary_10_1002_widm_1264
crossref_primary_10_1109_TGRS_2023_3280183
crossref_primary_10_1109_TGRS_2022_3176216
crossref_primary_10_1177_20552076241297053
crossref_primary_10_3390_rs9030298
crossref_primary_10_1111_1556_4029_14909
crossref_primary_10_3390_rs16224202
crossref_primary_10_1016_j_ins_2022_04_006
crossref_primary_10_1016_j_sab_2021_106183
crossref_primary_10_1080_01431161_2022_2054299
crossref_primary_10_3390_ijerph20043059
crossref_primary_10_3390_rs14081951
crossref_primary_10_1007_s12517_021_07995_3
crossref_primary_10_17341_gazimmfd_479086
crossref_primary_10_3390_rs16162942
crossref_primary_10_1155_2020_9673724
crossref_primary_10_3390_rs13142790
crossref_primary_10_1109_ACCESS_2022_3172501
crossref_primary_10_1109_JSTARS_2021_3088228
crossref_primary_10_1007_s11042_021_11422_w
crossref_primary_10_1080_01431161_2018_1547932
crossref_primary_10_1109_LGRS_2017_2764915
crossref_primary_10_1109_LGRS_2017_2681128
crossref_primary_10_3390_rs10071156
crossref_primary_10_1080_01431161_2022_2135412
crossref_primary_10_1109_TGRS_2024_3511033
crossref_primary_10_1007_s12517_021_06516_6
crossref_primary_10_3390_ijgi8040160
crossref_primary_10_1109_TGRS_2018_2865953
crossref_primary_10_1109_TIP_2023_3244414
crossref_primary_10_1109_LGRS_2022_3141870
crossref_primary_10_1109_TGRS_2024_3474736
crossref_primary_10_1109_TGRS_2020_3045790
crossref_primary_10_1109_TGRS_2023_3345923
crossref_primary_10_1109_TGRS_2022_3176637
crossref_primary_10_1109_JSTARS_2019_2915259
crossref_primary_10_1117_1_JRS_18_016509
crossref_primary_10_1007_s11760_024_03044_0
crossref_primary_10_1016_j_foodres_2021_110577
crossref_primary_10_3390_rs13071368
crossref_primary_10_1016_j_infrared_2022_104083
crossref_primary_10_1080_01431161_2024_2307943
crossref_primary_10_1109_TGRS_2024_3364143
crossref_primary_10_1007_s41064_020_00124_x
crossref_primary_10_1007_s11042_023_15444_4
crossref_primary_10_3788_LOP240832
crossref_primary_10_1109_TGRS_2019_2949180
crossref_primary_10_1109_TGRS_2023_3320657
crossref_primary_10_1109_JSTARS_2018_2810320
crossref_primary_10_3390_electronics12132991
crossref_primary_10_3390_en12071280
crossref_primary_10_1038_s41598_017_07337_y
crossref_primary_10_3390_rs13050898
crossref_primary_10_1080_01431161_2023_2275325
crossref_primary_10_1109_TGRS_2020_2974134
crossref_primary_10_3390_rs15184391
crossref_primary_10_1049_cvi2_12073
crossref_primary_10_1109_LGRS_2018_2834522
crossref_primary_10_1109_TGRS_2017_2748160
crossref_primary_10_1016_j_geoderma_2023_116521
crossref_primary_10_1007_s00371_019_01753_z
crossref_primary_10_1109_TGRS_2024_3356524
crossref_primary_10_1016_j_inffus_2024_102383
crossref_primary_10_1109_TGRS_2023_3258488
crossref_primary_10_32604_cmc_2024_056706
crossref_primary_10_3390_app14188500
crossref_primary_10_1109_TIP_2021_3055613
crossref_primary_10_1109_LGRS_2024_3398439
crossref_primary_10_32604_cmes_2022_020601
crossref_primary_10_3390_rs14091968
crossref_primary_10_3390_ani8050066
crossref_primary_10_3390_s19245401
crossref_primary_10_1109_LGRS_2022_3217775
crossref_primary_10_1007_s13131_019_1445_z
crossref_primary_10_1039_D2AN01035F
crossref_primary_10_1109_JSTARS_2020_3004973
crossref_primary_10_1109_TGRS_2019_2908679
crossref_primary_10_1109_TGRS_2022_3183189
crossref_primary_10_1109_TGRS_2021_3057689
crossref_primary_10_1080_2150704X_2019_1649736
crossref_primary_10_1109_TBDATA_2019_2934475
crossref_primary_10_3390_rs15123177
crossref_primary_10_1007_s11432_019_2805_y
crossref_primary_10_1109_ACCESS_2019_2916095
crossref_primary_10_1109_TGRS_2022_3233847
crossref_primary_10_1088_1755_1315_1138_1_012040
crossref_primary_10_1016_j_engappai_2024_108669
crossref_primary_10_1109_TGRS_2020_3040203
crossref_primary_10_1109_TGRS_2025_3541879
crossref_primary_10_1007_s11227_022_04961_y
crossref_primary_10_1109_JSTARS_2022_3188732
crossref_primary_10_1007_s11760_023_02968_3
crossref_primary_10_3390_e23010020
crossref_primary_10_1007_s12596_023_01473_7
crossref_primary_10_1109_TCSVT_2024_3386578
crossref_primary_10_1109_TCYB_2020_3032958
crossref_primary_10_1109_TGRS_2022_3208897
crossref_primary_10_3390_rs12223733
crossref_primary_10_1007_s40010_017_0433_y
crossref_primary_10_1002_ece3_10454
crossref_primary_10_1109_TGRS_2020_2967821
crossref_primary_10_1109_JSTARS_2021_3109600
crossref_primary_10_1109_JSTARS_2021_3120659
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_1080_2150704X_2021_1992034
crossref_primary_10_1109_TGRS_2024_3386579
crossref_primary_10_1007_s00521_019_04282_x
crossref_primary_10_1080_22797254_2023_2262738
crossref_primary_10_3390_rs11222690
crossref_primary_10_1016_j_asoc_2021_107563
crossref_primary_10_1016_j_ins_2024_121504
crossref_primary_10_1109_TGRS_2021_3090429
crossref_primary_10_1109_TGRS_2023_3241193
crossref_primary_10_1109_LGRS_2022_3204442
crossref_primary_10_1016_j_saa_2022_121560
crossref_primary_10_12677_csa_2024_148179
crossref_primary_10_3390_rs15102497
crossref_primary_10_1002_widm_1426
crossref_primary_10_1109_LGRS_2020_2991405
crossref_primary_10_3390_f10090818
crossref_primary_10_3390_app13127143
crossref_primary_10_3390_rs13040820
crossref_primary_10_1080_10106049_2020_1734871
crossref_primary_10_1038_s41598_024_64636_x
crossref_primary_10_1109_ACCESS_2020_3027776
crossref_primary_10_1109_TGRS_2024_3463187
crossref_primary_10_3390_a17050182
crossref_primary_10_3389_fnut_2024_1325934
crossref_primary_10_1016_j_neucom_2016_09_010
crossref_primary_10_1080_10408347_2023_2207652
crossref_primary_10_1016_j_engappai_2023_107280
crossref_primary_10_3390_rs11222673
crossref_primary_10_3390_rs12142327
crossref_primary_10_1109_TGRS_2025_3543821
crossref_primary_10_1155_2021_8857931
crossref_primary_10_1109_TIP_2018_2809606
crossref_primary_10_3390_rs16183412
crossref_primary_10_1016_j_isprsjprs_2021_08_010
crossref_primary_10_3390_rs11070883
crossref_primary_10_1109_TIM_2023_3342225
crossref_primary_10_1007_s11227_023_05568_7
crossref_primary_10_1016_j_eswa_2023_119904
crossref_primary_10_1109_TGRS_2017_2769673
crossref_primary_10_1016_j_ins_2019_03_055
crossref_primary_10_1109_JSTARS_2019_2913097
crossref_primary_10_1111_jmi_13012
crossref_primary_10_1093_insilicoplants_diab017
crossref_primary_10_3390_rs14040818
crossref_primary_10_1080_2150704X_2020_1717014
crossref_primary_10_1109_JSTARS_2022_3174135
crossref_primary_10_3390_rs13020198
crossref_primary_10_1109_TGRS_2022_3202908
crossref_primary_10_1109_LGRS_2022_3169815
crossref_primary_10_1109_TGRS_2019_2948031
crossref_primary_10_1016_j_chemolab_2022_104538
crossref_primary_10_3390_rs14122907
crossref_primary_10_1080_23311916_2020_1857500
crossref_primary_10_12677_AAM_2020_911244
crossref_primary_10_1038_s41598_022_05422_5
crossref_primary_10_1080_2150704X_2018_1511933
crossref_primary_10_1109_LGRS_2021_3062944
crossref_primary_10_3390_diagnostics11101810
crossref_primary_10_1080_22797254_2023_2227993
crossref_primary_10_1016_j_jvcir_2022_103693
crossref_primary_10_1080_00387010_2025_2476011
crossref_primary_10_1109_LGRS_2019_2892117
crossref_primary_10_1109_TGRS_2021_3056722
crossref_primary_10_1016_j_eswa_2025_126811
crossref_primary_10_1088_1755_1315_502_1_012015
crossref_primary_10_1088_1755_1315_502_1_012014
crossref_primary_10_3390_rs16234411
crossref_primary_10_1007_s11042_020_10141_y
crossref_primary_10_1155_2017_5046727
crossref_primary_10_1109_TGRS_2018_2832228
crossref_primary_10_1109_TIM_2024_3406811
crossref_primary_10_1109_TGRS_2021_3091985
crossref_primary_10_1109_TGRS_2023_3343909
crossref_primary_10_1109_TGRS_2021_3090410
crossref_primary_10_1109_TGRS_2023_3265388
crossref_primary_10_3390_jimaging9070141
crossref_primary_10_1109_TGRS_2021_3090413
crossref_primary_10_1016_j_landurbplan_2024_105122
crossref_primary_10_1109_TGRS_2022_3184691
crossref_primary_10_1016_j_jag_2022_103022
crossref_primary_10_1109_TGRS_2018_2886022
crossref_primary_10_1109_TGRS_2024_3377610
crossref_primary_10_3390_rs13224621
crossref_primary_10_1080_01431161_2023_2209268
crossref_primary_10_1109_TGRS_2024_3362356
crossref_primary_10_1016_j_image_2019_05_004
crossref_primary_10_1109_JSTARS_2025_3533302
crossref_primary_10_1109_TGRS_2024_3385478
crossref_primary_10_1109_TGRS_2024_3386566
crossref_primary_10_1109_TGRS_2021_3051056
crossref_primary_10_1080_01431161_2022_2105668
crossref_primary_10_1109_TGRS_2020_2981051
crossref_primary_10_3390_rs11060654
crossref_primary_10_3390_rs12010188
crossref_primary_10_1016_j_envsoft_2020_104751
crossref_primary_10_1109_TIM_2020_3011777
crossref_primary_10_20948_prepr_2018_282
crossref_primary_10_1021_acsnano_0c08974
crossref_primary_10_1080_01431161_2020_1752413
crossref_primary_10_3390_s20174975
crossref_primary_10_52547_jgit_9_4_109
crossref_primary_10_1117_1_JEI_30_4_041406
crossref_primary_10_1109_TGRS_2020_3011943
crossref_primary_10_1155_2021_2472726
crossref_primary_10_1155_2017_3792805
Cites_doi 10.1109/TGRS.2004.827257
10.1109/TGRS.2009.2016214
10.1113/jphysiol.1968.sp008455
10.1109/tpami.2012.231
10.1109/36.752239
10.1016/j.isprsjprs.2010.11.001
10.1109/TGRS.2012.2205263
10.1162/neco.2008.12-07-661
10.1016/0893-6080(88)90014-7
10.1080/014311697218700
10.1109/tgrs.2011.2165957
10.1126/science.1127647
10.1109/79.974718
10.1109/jstars.2014.2329330
10.1109/TGRS.2004.831865
10.1109/5.726791
10.1109/TGRS.2009.2037898
ContentType Journal Article
Copyright Copyright © 2015 Wei Hu et al.
Copyright © 2015 Wei Hu et al. Wei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright_xml – notice: Copyright © 2015 Wei Hu et al.
– notice: Copyright © 2015 Wei Hu et al. Wei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
3V.
7SP
7U5
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
D1I
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
L7M
M0N
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7QO
FR3
P64
7SC
L~C
L~D
DOI 10.1155/2015/258619
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Biotechnology Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts Professional
DatabaseTitleList Engineering Research Database
Publicly Available Content Database
Technology Research Database
CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-7268
Editor Wu, Tianfu
Editor_xml – sequence: 1
  givenname: Tianfu
  surname: Wu
  fullname: Wu, Tianfu
EndPage 12
ExternalDocumentID 3772682211
10_1155_2015_258619
1070085
GroupedDBID .4S
.DC
188
24P
29L
2UF
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
ADJCN
AEGXH
AENEX
AFKRA
AHFXO
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CAHYU
CCPQU
CNMHZ
CS3
CWDGH
D1I
DWQXO
E3Z
EBS
EDO
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
IL9
IPNFZ
ITC
K6V
K7-
KB.
KQ8
L6V
M0N
M7S
M~E
OK1
P62
PDBOC
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RHU
RHX
RIG
RNS
TR2
TUS
UGNYK
UNMZH
RHW
0R~
AAYXX
ACCMX
ADMLS
CITATION
OVT
PHGZM
PHGZT
7SP
7U5
7XB
8AL
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7QO
FR3
P64
7SC
L~C
L~D
ID FETCH-LOGICAL-a628t-109877b6cd0333730e2d758c3b16d15acf565aad7d6c579ace8a7380c7a3ef623
IEDL.DBID BENPR
ISSN 1687-725X
IngestDate Thu Jul 10 18:02:13 EDT 2025
Thu Jul 10 23:26:32 EDT 2025
Fri Jul 25 12:17:20 EDT 2025
Tue Jul 01 03:54:46 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Sun Jun 02 19:19:08 EDT 2024
Tue Nov 26 17:06:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2015
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a628t-109877b6cd0333730e2d758c3b16d15acf565aad7d6c579ace8a7380c7a3ef623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9999-783X
0000-0002-2058-2373
OpenAccessLink https://www.proquest.com/docview/1702625919?pq-origsite=%requestingapplication%
PQID 1702625919
PQPubID 237780
PageCount 12
ParticipantIDs proquest_miscellaneous_1730104707
proquest_miscellaneous_1709189535
proquest_journals_1702625919
crossref_citationtrail_10_1155_2015_258619
crossref_primary_10_1155_2015_258619
hindawi_primary_10_1155_2015_258619
emarefa_primary_1070085
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: New York
PublicationTitle Journal of sensors
PublicationYear 2015
Publisher Hindawi Publishing Corporation
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi Publishing Corporation
– name: John Wiley & Sons, Inc
References (4) 2012; 50
(10) 1999; 37
Girshick R. Donahue J. Darrell T. Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 IEEE 580 587
Abdel-Hamid O. Mohamed A.-R. Jiang H. Penn G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12) March 2012 IEEE 4277 4280 10.1109/icassp.2012.6288864 2-s2.0-84867605836
Sermanet P. LeCun Y. Traffic sign recognition with multi-scale convolutional networks Proceedings of the International Joint Conference on Neural Network (IJCNN '11) August 2011 IEEE 2809 2813 10.1109/ijcnn.2011.6033589 2-s2.0-80054736963
Taigman Y. Yang M. Ranzato M. Wolf L. DeepFace: closing the gap to human-level performance in face verification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 Columbus, Ohio, USA 1701 1708 10.1109/cvpr.2014.220
(28) 1968; 195
(1) 2002; 19
(7) 2011; 66
(27) 2008; 20
Sainath T. N. Mohamed A.-R. Kingsbury B. Ramabhadran B. Deep convolutional neural networks for LVCSR Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '13) May 2013 Vancouver, Canada IEEE 8614 8618 10.1109/icassp.2013.6639347 2-s2.0-84890525984
Bergstra J. Bastien F. Breuleux O. Lamblin P. Pascanu R. Delalleau O. Desjardins G. Warde-Farley D. Goodfellow I. Bergeron A. Bengio Y. Theano: deep learning on GPUs with python Proceedings of the NIPS 2011, Big Learning Workshop December 2011 Granada, Spain 712 721
(11) 2010; 48
(9) 1997; 18
Sermanet P. Chintala S. LeCun Y. Convolutional neural networks applied to house numbers digit classification Proceedings of the 21st International Conference on Pattern Recognition (ICPR '12) November 2012 IEEE 3288 3291 2-s2.0-84874575248
Chopra S. Hadsell R. LeCun Y. Learning a similarity metric discriminatively, with application to face verification 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05) June 2005 IEEE 539 546 10.1109/cvpr.2005.202 2-s2.0-24644436425
(5) 2004; 42
Cireşan D. C. Meier U. Masci J. Gambardella L. M. Schmidhuber J. Flexible, high performance convolutional neural networks for image classification 22 Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI '11) July 2011 1237 1242 10.5591/978-1-57735-516-8/ijcai11-210 2-s2.0-84881039921
Simard P. Y. Steinkraus D. Platt J. C. Best practices for convolutional neural networks applied to visual document analysis 2 Proceedings of the 7th International Conference on Document Analysis and Recognition August 2003 Edinburgh, UK IEEE Computer Society 958 963 10.1109/ICDAR.2003.1227801
(3) 2009; 47
(26) 2014; 7
Jia Y. Shelhamer E. Donahue J. Karayev S. Long J. Girshick R. Guadarrama S. Caffe: convolutional architecture for fast feature embedding Proceedings of the ACM International Conference on Multimedia November 2014 Orlando, Fla, USA ACM 675 678 10.1145/2647868.2654889
(2) 2004; 42
Ciregan D. Meier U. Schmidhuber J. Multi-column deep neural networks for image classification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12) June 2012 IEEE 3642 3649 2-s2.0-84866714584 10.1109/cvpr.2012.6248110
(13) 1988; 1
(21) 2013; 35
LeCun Y. Cortes C. Burges C. J. The MNIST database of handwritten digits 1998, http://yann.lecun.com/exdb/mnist
Krizhevsky A. Sutskever I. Hinton G. E. Imagenet classification with deep convolutional neural networks Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12) 2012 1097 1105
(8) 2013; 51
LeCun Y. A. Bottou L. Orr G. B. Müller K.-R. Efficient backprop Neural Networks: Tricks of the Trade 2012 Berlin, Germany Springer 9 48
(34) 2014; 15
Gualtieri J. A. Chettri S. Support vector machines for classification of hyperspectral data 2 Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '00) July 2000 IEEE 813 815 2-s2.0-0034546934
(14) 1998; 86
(12) 2006; 313
11
12
14
26
27
(29) 2012
28
1
2
3
4
5
7
8
9
10
21
References_xml – reference: Abdel-Hamid O. Mohamed A.-R. Jiang H. Penn G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12) March 2012 IEEE 4277 4280 10.1109/icassp.2012.6288864 2-s2.0-84867605836
– reference: Bergstra J. Bastien F. Breuleux O. Lamblin P. Pascanu R. Delalleau O. Desjardins G. Warde-Farley D. Goodfellow I. Bergeron A. Bengio Y. Theano: deep learning on GPUs with python Proceedings of the NIPS 2011, Big Learning Workshop December 2011 Granada, Spain 712 721
– volume: 48
  start-page: 2271
  issue: 5
  year: 2010
  end-page: 2282
  ident: 11
  article-title: Semisupervised neural networks for efficient hyperspectral image classification
– reference: LeCun Y. Cortes C. Burges C. J. The MNIST database of handwritten digits 1998, http://yann.lecun.com/exdb/mnist/
– reference: Gualtieri J. A. Chettri S. Support vector machines for classification of hyperspectral data 2 Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '00) July 2000 IEEE 813 815 2-s2.0-0034546934
– volume: 20
  start-page: 2629
  issue: 11
  year: 2008
  end-page: 2636
  ident: 27
  article-title: Deep, narrow sigmoid belief networks are universal approximators
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  end-page: 1929
  ident: 21
  article-title: Learning hierarchical features for scene labeling
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  end-page: 2107
  ident: 26
  article-title: Deep learning-based classification of hyperspectral data
– reference: Sermanet P. LeCun Y. Traffic sign recognition with multi-scale convolutional networks Proceedings of the International Joint Conference on Neural Network (IJCNN '11) August 2011 IEEE 2809 2813 10.1109/ijcnn.2011.6033589 2-s2.0-80054736963
– reference: Simard P. Y. Steinkraus D. Platt J. C. Best practices for convolutional neural networks applied to visual document analysis 2 Proceedings of the 7th International Conference on Document Analysis and Recognition August 2003 Edinburgh, UK IEEE Computer Society 958 963 10.1109/ICDAR.2003.1227801
– volume: 47
  start-page: 2973
  issue: 8
  year: 2009
  end-page: 2987
  ident: 3
  article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
– reference: Taigman Y. Yang M. Ranzato M. Wolf L. DeepFace: closing the gap to human-level performance in face verification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 Columbus, Ohio, USA 1701 1708 10.1109/cvpr.2014.220
– reference: Sermanet P. Chintala S. LeCun Y. Convolutional neural networks applied to house numbers digit classification Proceedings of the 21st International Conference on Pattern Recognition (ICPR '12) November 2012 IEEE 3288 3291 2-s2.0-84874575248
– volume: 51
  start-page: 844
  issue: 2
  year: 2013
  end-page: 856
  ident: 8
  article-title: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
– reference: Girshick R. Donahue J. Darrell T. Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 IEEE 580 587
– volume: 19
  start-page: 17
  issue: 1
  year: 2002
  end-page: 28
  ident: 1
  article-title: Hyperspectral image data analysis
– volume: 18
  start-page: 699
  issue: 4
  year: 1997
  end-page: 709
  ident: 9
  article-title: Introduction neural networks in remote sensing
– reference: Cireşan D. C. Meier U. Masci J. Gambardella L. M. Schmidhuber J. Flexible, high performance convolutional neural networks for image classification 22 Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI '11) July 2011 1237 1242 10.5591/978-1-57735-516-8/ijcai11-210 2-s2.0-84881039921
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2323
  ident: 14
  article-title: Gradient-based learning applied to document recognition
– volume: 195
  start-page: 215
  issue: 1
  year: 1968
  end-page: 243
  ident: 28
  article-title: Receptive fields and functional architecture of monkey striate cortex
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: 34
  article-title: Dropout: a simple way to prevent neural networks from overfitting
– volume: 42
  start-page: 1335
  issue: 6
  year: 2004
  end-page: 1343
  ident: 2
  article-title: A relative evaluation of multiclass image classification by support vector machines
– reference: Jia Y. Shelhamer E. Donahue J. Karayev S. Long J. Girshick R. Guadarrama S. Caffe: convolutional architecture for fast feature embedding Proceedings of the ACM International Conference on Multimedia November 2014 Orlando, Fla, USA ACM 675 678 10.1145/2647868.2654889
– reference: Sainath T. N. Mohamed A.-R. Kingsbury B. Ramabhadran B. Deep convolutional neural networks for LVCSR Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '13) May 2013 Vancouver, Canada IEEE 8614 8618 10.1109/icassp.2013.6639347 2-s2.0-84890525984
– reference: Chopra S. Hadsell R. LeCun Y. Learning a similarity metric discriminatively, with application to face verification 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05) June 2005 IEEE 539 546 10.1109/cvpr.2005.202 2-s2.0-24644436425
– reference: Ciregan D. Meier U. Schmidhuber J. Multi-column deep neural networks for image classification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12) June 2012 IEEE 3642 3649 2-s2.0-84866714584 10.1109/cvpr.2012.6248110
– volume: 50
  start-page: 1185
  issue: 4
  year: 2012
  end-page: 1198
  ident: 4
  article-title: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: 12
  article-title: Reducing the dimensionality of data with neural networks
– volume: 42
  start-page: 1778
  issue: 8
  year: 2004
  end-page: 1790
  ident: 5
  article-title: Classification of hyperspectral remote sensing images with support vector machines
– volume: 1
  start-page: 119
  issue: 2
  year: 1988
  end-page: 130
  ident: 13
  article-title: Neocognitron: a hierarchical neural network capable of visual pattern recognition
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  end-page: 259
  ident: 7
  article-title: Support vector machines in remote sensing: a review
– reference: LeCun Y. A. Bottou L. Orr G. B. Müller K.-R. Efficient backprop Neural Networks: Tricks of the Trade 2012 Berlin, Germany Springer 9 48
– volume: 37
  start-page: 1179
  issue: 2
  year: 1999
  end-page: 1184
  ident: 10
  article-title: A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
– reference: Krizhevsky A. Sutskever I. Hinton G. E. Imagenet classification with deep convolutional neural networks Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12) 2012 1097 1105
– ident: 2
  doi: 10.1109/TGRS.2004.827257
– ident: 3
  doi: 10.1109/TGRS.2009.2016214
– ident: 28
  doi: 10.1113/jphysiol.1968.sp008455
– start-page: 9
  volume-title: Efficient backprop
  year: 2012
  ident: 29
– ident: 21
  doi: 10.1109/tpami.2012.231
– ident: 10
  doi: 10.1109/36.752239
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 34
  publication-title: The Journal of Machine Learning Research
– ident: 7
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: 8
  doi: 10.1109/TGRS.2012.2205263
– ident: 27
  doi: 10.1162/neco.2008.12-07-661
– volume: 1
  start-page: 119
  issue: 2
  year: 1988
  ident: 13
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(88)90014-7
– ident: 9
  doi: 10.1080/014311697218700
– ident: 4
  doi: 10.1109/tgrs.2011.2165957
– ident: 12
  doi: 10.1126/science.1127647
– ident: 1
  doi: 10.1109/79.974718
– ident: 26
  doi: 10.1109/jstars.2014.2329330
– ident: 5
  doi: 10.1109/TGRS.2004.831865
– ident: 14
  doi: 10.1109/5.726791
– ident: 11
  doi: 10.1109/TGRS.2009.2037898
SSID ssj0063733
Score 2.576684
Snippet Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional...
SourceID proquest
crossref
hindawi
emarefa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Image classification
Neural networks
Spectra
Spectral signatures
Support vector machines
Two dimensional
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46GOiDeHc6peKehEK63JpHmY5O0CcHfStpmqLguuE2_fuepNmYToYvvZBTaM_1O01yDkIdMB-NhWQhxA4V0i4twlhyGmJDSklz21TEbnB-eubJkD6mLPULZKfrU_hACul5BAcWc1vdcxv0y-bkSbrwt5wI1zA-4mAuostSvwvv16M_4k7TjBRcQDBqvtrU9-ttzRW7-NLfR3seGAZ3tSQP0JapDtHuSrnAIzS4N2YS9MbVp9cXoLfFNdzJreaeBoBBgwRyy3oLpR0ajMBlBK75pV0W5CRxjIb9h5deEvpWCKHi3XgGzlLGQuRcF5gQ-GBsugUgfU3yiBcRU7oEYKZUIQqumZBKm1gJEmMtFDElQJwT1KjGlTlDQSlVAcDAaFVqijVoEgEpYkpt8M6FbqHbBaMy7euE23YV75nLFxjLLFezmqst1FkST-ryGH-TnXqOr1AJC_da6MZLYPPz7YV0Mm9j0ywSkD9C9maHr5fDYB12ykNVZjx3NDKKJSNsEw1xRYqwOP_Xy1ygHXtX_4dpo8bsY24uAZnM8iunmN_sCtl0
  priority: 102
  providerName: Hindawi Publishing
Title Deep Convolutional Neural Networks for Hyperspectral Image Classification
URI https://search.emarefa.net/detail/BIM-1070085
https://dx.doi.org/10.1155/2015/258619
https://www.proquest.com/docview/1702625919
https://www.proquest.com/docview/1709189535
https://www.proquest.com/docview/1730104707
Volume 2015
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3ZSsNAcPBA0Afxtl5E9EkIJt3s9SRarVFQRBT7FjabDQo2rbbq7zu72WpB6Us2ZCdkM_fsMQNwiOKjIy5piLZDhUkzKUIhWRJGhpQyyW1REXvA-eaWpY_JdYd2_ITbwG-rHOlEp6iLnrZz5Mcxx2gBffVYnvTfQls1yq6u-hIa0zCLKlhg8DV7dnF7dz_SxYxwV0w-ZihKvEk7_oQejgCj_hgvVDCbZGfMJs2ZrsIbNFRzzzYs_nr5o6ad7WkvwaJ3GoPTmsrLMGWqFVgYSyW4ClfnxvSDVq_69LyE8DbxhmvcTu9BgP5pkGLcWR-vtF1XXVQngSuMabcMOSqtwWP74qGVhr5MQqhYUwxRkUrBec50ERGCPxyZZoFRgCZ5zIqYKl2i06ZUwQumKZdKG6E4EZHmipgS3Z91mKl6ldmEoJSqQKfBaFXqJNLIZQQpHCWJNew51w04GiEq0z6HuC1l8Zq5WILSzGI1q7HagMMf4H6dOuN_sA2P8TEobl3BBhx4Ckx-f2dEnczL3yD75ZYG7P90o-TY5RBVmd6Hg5GxkJTQSTDEJTCK-Nbkz2zDvB1TPTmzAzPD9w-zi-7KMN-DadG-3POciW3r6fwyxaf3aecbyqTpBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hECo9oL6AUNq6Kr0gWdjel_dQVRVpmjQJJ5ByM-v1Wq0ETkoCiD_V39iZtU0jtcqNi23Jk4dnv5n5Zr07A3CI5mMjpUWIscOEPOFFmGrJw8ixUvOcmorQBufxqeyf8-8TMVmD3-1eGFpW2fpE76iLqaU58uNYYbaAXD3Wn2e_QuoaRW9X2xYaNSyG7v4OU7b5p0EXx_djkvS-np30w6arQGhkki7Q72CarXJpi4gxhgB3SYGk2bI8lkUsjC2R4xhTqEJaobSxLjWKpZFVhrlSUqEDdPkbnDFNFpX2vrWeX-K3-QX9Eg1XJWLS7AfE5z3GOIsHkUoq6bMUATfdlcELDIubPygJv_v5T1Dwka73DLYbihp8qTH1HNZc9QKeLhUufAmDrnOz4GRa3TbIRXkq8-FPfl35PEA2HPQxy603c9KtwRU6r8C34aQFSh4Tr-D8UdS3A-vVtHJ7EJTaFEhRnDWl5ZFFTDPEU8Q50Yhc2Q4ctYrKbFOxnBpnXGY-cxEiI61mtVY7cPggPKsLdfxfbLfR-JKUIuLZgQ_NCKz-_EE7Ollj7fPsLzY78P7hNtopvXwxlZveeBkdp1owsUqG-XJJkdpf_TPv4En_bDzKRoPT4WvYov9XTwsdwPri-sa9QaK0yN96dAZw8djm8Acf6yDb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VqYrgwPsRKGBEuSC5sb0v-4AQSggJhYoDFbm56_VaVKVOIAkV_DT-Cn-GmfW6RIBy64GLbcnj9zcz36xnZwB2UH1MpDIRou_QIU94GaaZ5GFkWZXxgpqK0ATnt_tydMBfT8RkA360c2EorbK1ic5Ql1NDY-S9WGG0gFw9znqVT4t4Nxg-n30OqYMU_Wlt22k0ENmz304xfJs_Gw_wWz9JkuHL9_1R6DsMhFom6QJtEIbcqpCmjBhjCHablEigDStiWcZCmwr5jtalKqURKtPGplqxNDJKM1tJKnqA5n-TujrxDmz2PwxejVo_IPF8Lr1fohqrREz87EB8-h56XVyIVFKBnxV_uGVPNG6gk9z6SCH56dFfLsL5veEV-Nm-sSbd5Xh3uSh2zfc_ikn-n6_0Klz2dDx40ejPNdiw9XW4tFKk8QaMB9bOgv60_uq1FOWppIlbuRz6eYDMPxhhRN9MXKVd4xM01IFrOUrJWA7_N-HgXJ7lFnTqaW3vQFBlukQ6Zo2uDI8M6i9D3Yk4J8pUKNOFpy0McuOrs1OTkE-5i9KEyAkzeYOZLuycCc-aoiT_Frvt8bQipYhkd-Gxx9f647db3OTess3z36DpwqOz3WiT6EeTru106WSyOM0EE-tkmCsNFam76y_zEC4gKvM34_29e3CRbq8ZAduGzuLL0t5HTrgoHnjlC-DwvMH5CzVJbco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Networks+for+Hyperspectral+Image+Classification&rft.jtitle=Journal+of+sensors&rft.au=Hu%2C+Wei&rft.au=Huang%2C+Yangyu&rft.au=Wei%2C+Li&rft.au=Zhang%2C+Fan&rft.date=2015-01-01&rft.issn=1687-725X&rft.eissn=1687-7268&rft.volume=2015&rft_id=info:doi/10.1155%2F2015%2F258619&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-725X&client=summon