Deep Convolutional Neural Networks for Hyperspectral Image Classification
Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More sp...
Saved in:
Published in | Journal of sensors Vol. 2015; no. 2015; pp. 1 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1687-725X 1687-7268 |
DOI | 10.1155/2015/258619 |
Cover
Loading…
Abstract | Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods. |
---|---|
AbstractList | Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which are the input layer, the convolutional layer, the max pooling layer, the full connection layer, and the output layer. These five layers are implemented on each spectral signature to discriminate against others. Experimental results based on several hyperspectral image data sets demonstrate that the proposed method can achieve better classification performance than some traditional methods, such as support vector machines and the conventional deep learning-based methods. |
Author | Huang, Yangyu Hu, Wei Li, Heng-Chao Zhang, Fan Wei, Li |
Author_xml | – sequence: 1 fullname: Zhang, Fan – sequence: 2 fullname: Wei, Li – sequence: 3 fullname: Huang, Yangyu – sequence: 4 fullname: Hu, Wei – sequence: 5 fullname: Li, Heng-Chao |
BookMark | eNqN0c1LwzAUAPAgE9ymJ-9S8CLKNGnMR49SPzYYelHwVrL0VTO7piatY_-92SoiA9FLXiC_93h5b4B6la0AoUOCzwlh7CLGJBxMcpLsoD7hUoxEzGXv-86e99DA-znGnApK-2hyDVBHqa0-bNk2xlaqjO6hdZvQLK1781FhXTRe1eB8DbpZP00W6gWitFTem8JotU7cR7uFKj0cfMUherq9eUzHo-nD3SS9mo4Uj2UzIjiRQsy4zjGloQcMcS6Y1HRGeE6Y0gXjTKlc5FwzkSgNUgkqsRaKQsFjOkQnXd3a2fcWfJMtjNdQlqoC2_qMhJoEXwos_kFxQmTCKAv0eIvObevCNDYq5jFLSBIU6ZR21nsHRaZNs_l9GIspM4Kz9R6y9R6ybg8h52wrp3ZmodzqF33a6VdT5Wpp_sBHHYZAoFA_sMBYMvoJ85KfiA |
CitedBy_id | crossref_primary_10_3390_rs14132997 crossref_primary_10_1109_LGRS_2024_3379232 crossref_primary_10_1007_s10462_024_11100_x crossref_primary_10_1016_j_isprsjprs_2020_05_023 crossref_primary_10_1109_JSTARS_2018_2888808 crossref_primary_10_3390_electronics12173641 crossref_primary_10_1049_iet_ipr_2019_1200 crossref_primary_10_1080_01431161_2017_1362131 crossref_primary_10_1109_TGRS_2024_3385655 crossref_primary_10_1186_s13640_018_0284_8 crossref_primary_10_3390_rs13173411 crossref_primary_10_1016_j_compag_2024_109498 crossref_primary_10_1007_s11760_023_02964_7 crossref_primary_10_1016_j_meatsci_2018_05_020 crossref_primary_10_1109_TGRS_2018_2805286 crossref_primary_10_1016_j_compeleceng_2022_108381 crossref_primary_10_1016_j_rse_2018_11_031 crossref_primary_10_3390_f14091881 crossref_primary_10_1016_j_jjimei_2022_100058 crossref_primary_10_1109_TGRS_2020_3044094 crossref_primary_10_1016_j_rse_2018_11_032 crossref_primary_10_1016_j_engappai_2023_106017 crossref_primary_10_3390_rs13050930 crossref_primary_10_1016_j_eswa_2024_125106 crossref_primary_10_3390_rs16010193 crossref_primary_10_3390_rs15215208 crossref_primary_10_3390_s25061858 crossref_primary_10_1109_LGRS_2020_2992661 crossref_primary_10_1109_TGRS_2022_3231930 crossref_primary_10_1109_TGRS_2023_3253247 crossref_primary_10_1109_TGRS_2023_3253248 crossref_primary_10_3390_rs15071937 crossref_primary_10_1007_s42979_022_01425_1 crossref_primary_10_3390_technologies12090163 crossref_primary_10_1007_s11554_022_01226_y crossref_primary_10_1016_j_engappai_2023_107351 crossref_primary_10_1109_ACCESS_2017_2773363 crossref_primary_10_3390_a11010009 crossref_primary_10_1109_JSTARS_2022_3210373 crossref_primary_10_1109_JSTARS_2024_3491294 crossref_primary_10_1117_1_JRS_13_046512 crossref_primary_10_3390_app12010174 crossref_primary_10_1109_TGRS_2018_2888485 crossref_primary_10_1109_JSTARS_2018_2795753 crossref_primary_10_1016_j_cviu_2019_102801 crossref_primary_10_1016_j_knosys_2019_01_020 crossref_primary_10_1109_LGRS_2022_3167535 crossref_primary_10_1109_TGRS_2020_3007921 crossref_primary_10_1016_j_eswa_2023_119858 crossref_primary_10_3390_s22249678 crossref_primary_10_3390_rs11020194 crossref_primary_10_3390_rs13122285 crossref_primary_10_1109_LGRS_2019_2945122 crossref_primary_10_1016_j_isprsjprs_2019_09_006 crossref_primary_10_1109_TGRS_2023_3266565 crossref_primary_10_3390_rs11172008 crossref_primary_10_1007_s12145_024_01466_5 crossref_primary_10_1109_ACCESS_2024_3455369 crossref_primary_10_1007_s12145_024_01651_6 crossref_primary_10_3390_rs15194681 crossref_primary_10_1016_j_jksuci_2019_12_012 crossref_primary_10_1016_j_infrared_2024_105449 crossref_primary_10_1109_TGRS_2018_2843525 crossref_primary_10_12720_jait_15_8_991_1000 crossref_primary_10_1117_1_JRS_16_038501 crossref_primary_10_1080_02533839_2020_1831964 crossref_primary_10_1109_TGRS_2024_3442784 crossref_primary_10_1109_JSTARS_2017_2752282 crossref_primary_10_1117_1_JRS_13_024525 crossref_primary_10_3390_rs15184642 crossref_primary_10_1002_cpe_6945 crossref_primary_10_1109_TGRS_2024_3485483 crossref_primary_10_1016_j_neunet_2017_07_017 crossref_primary_10_1080_01431161_2018_1425561 crossref_primary_10_3390_rs10030395 crossref_primary_10_18287_2412_6179_CO_832 crossref_primary_10_1007_s11042_023_17546_5 crossref_primary_10_1109_ACCESS_2020_3040895 crossref_primary_10_1109_TGRS_2020_3003341 crossref_primary_10_1109_TGRS_2023_3254523 crossref_primary_10_1016_j_compag_2023_108092 crossref_primary_10_1109_TGRS_2021_3133582 crossref_primary_10_3390_jimaging4050063 crossref_primary_10_1002_ima_22616 crossref_primary_10_1155_2018_9218092 crossref_primary_10_1007_s11227_018_2300_2 crossref_primary_10_1016_j_neucom_2018_11_047 crossref_primary_10_1109_JSTARS_2023_3342983 crossref_primary_10_3390_electronics13132540 crossref_primary_10_1109_TNNLS_2023_3270369 crossref_primary_10_1007_s11554_018_0775_y crossref_primary_10_3390_rs12111780 crossref_primary_10_1016_j_infrared_2024_105425 crossref_primary_10_1109_ACCESS_2022_3166505 crossref_primary_10_3390_rs10101618 crossref_primary_10_1080_01431161_2023_2270109 crossref_primary_10_1155_2021_5541134 crossref_primary_10_1007_s11042_018_5986_5 crossref_primary_10_1109_MGRS_2020_2979764 crossref_primary_10_1186_s13640_018_0329_z crossref_primary_10_1007_s41064_019_00066_z crossref_primary_10_1038_srep37994 crossref_primary_10_1364_AO_386972 crossref_primary_10_1186_s13007_023_01046_6 crossref_primary_10_1109_TGRS_2023_3295097 crossref_primary_10_3390_rs12152495 crossref_primary_10_1038_s41598_024_57891_5 crossref_primary_10_3390_rs15194855 crossref_primary_10_3390_rs15204994 crossref_primary_10_3390_rs15153900 crossref_primary_10_1007_s11277_021_08763_y crossref_primary_10_1016_j_neucom_2021_05_051 crossref_primary_10_1109_TGRS_2021_3065507 crossref_primary_10_1371_journal_pone_0300013 crossref_primary_10_1109_TGRS_2024_3407952 crossref_primary_10_3390_s19071714 crossref_primary_10_1109_ACCESS_2024_3376258 crossref_primary_10_1109_TGRS_2022_3144158 crossref_primary_10_1109_JSTARS_2020_3041344 crossref_primary_10_1117_1_JRS_11_042613 crossref_primary_10_1016_j_knosys_2016_01_028 crossref_primary_10_3390_s22187074 crossref_primary_10_1016_j_meatsci_2020_108405 crossref_primary_10_1109_TGRS_2023_3255880 crossref_primary_10_1016_j_ecoinf_2022_101852 crossref_primary_10_3390_electronics12030488 crossref_primary_10_3390_s24216899 crossref_primary_10_3390_electronics10232893 crossref_primary_10_1109_TGRS_2021_3075546 crossref_primary_10_1109_TGRS_2024_3476327 crossref_primary_10_1016_j_infrared_2024_105401 crossref_primary_10_1109_TGRS_2019_2902568 crossref_primary_10_1063_5_0228645 crossref_primary_10_1117_1_JRS_11_042607 crossref_primary_10_1007_s11082_020_02671_4 crossref_primary_10_1080_20964471_2023_2273058 crossref_primary_10_3390_electronics12183879 crossref_primary_10_1117_1_JRS_11_042609 crossref_primary_10_1109_ACCESS_2024_3390558 crossref_primary_10_1007_s13042_022_01680_x crossref_primary_10_1109_ACCESS_2020_2974025 crossref_primary_10_1109_TGRS_2023_3235819 crossref_primary_10_3390_app13042697 crossref_primary_10_1109_TGRS_2020_2999405 crossref_primary_10_1109_TGRS_2021_3050257 crossref_primary_10_1016_j_sab_2020_105850 crossref_primary_10_1109_JSTARS_2021_3128932 crossref_primary_10_52547_jgit_10_1_1 crossref_primary_10_2493_jjspe_84_958 crossref_primary_10_1109_TGRS_2021_3057066 crossref_primary_10_1049_ipr2_12330 crossref_primary_10_18287_2412_6179_CO_1038 crossref_primary_10_1080_00387010_2017_1354889 crossref_primary_10_1109_TGRS_2024_3379380 crossref_primary_10_1117_1_JRS_13_026512 crossref_primary_10_1109_TGRS_2021_3072454 crossref_primary_10_1007_s10664_019_09759_w crossref_primary_10_1109_LGRS_2023_3303008 crossref_primary_10_1142_S0218488522400104 crossref_primary_10_1109_TIP_2023_3270104 crossref_primary_10_1145_3042064 crossref_primary_10_3390_s22228917 crossref_primary_10_3390_rs16071180 crossref_primary_10_3390_rs15112720 crossref_primary_10_1109_TIM_2021_3082274 crossref_primary_10_1007_s10916_018_1052_0 crossref_primary_10_1016_j_compag_2022_107343 crossref_primary_10_1117_1_JRS_13_038505 crossref_primary_10_3390_rs14133216 crossref_primary_10_1016_j_patcog_2017_09_007 crossref_primary_10_1080_01431161_2020_1823041 crossref_primary_10_1109_JSTARS_2023_3337112 crossref_primary_10_1109_JSTARS_2017_2655516 crossref_primary_10_1088_2632_2153_ad1d05 crossref_primary_10_1007_s44267_024_00038_x crossref_primary_10_1109_TGRS_2022_3181501 crossref_primary_10_1109_LGRS_2018_2878773 crossref_primary_10_3390_rs13030498 crossref_primary_10_1109_TGRS_2016_2636241 crossref_primary_10_1109_TCYB_2022_3169773 crossref_primary_10_1109_JSTARS_2022_3232762 crossref_primary_10_1007_s10462_025_11169_y crossref_primary_10_3390_rs11050484 crossref_primary_10_3390_rs14205122 crossref_primary_10_1109_TGRS_2022_3191541 crossref_primary_10_1080_01431161_2023_2224099 crossref_primary_10_1109_JSTARS_2024_3524443 crossref_primary_10_1109_TGRS_2019_2961947 crossref_primary_10_1109_TGRS_2023_3265879 crossref_primary_10_1109_TGRS_2022_3180685 crossref_primary_10_3390_rs13030464 crossref_primary_10_3389_fphy_2023_1159266 crossref_primary_10_3390_rs14030596 crossref_primary_10_1109_TIP_2022_3176537 crossref_primary_10_1109_TGRS_2022_3225438 crossref_primary_10_1109_TGRS_2023_3242776 crossref_primary_10_1109_JSTARS_2019_2957047 crossref_primary_10_1109_TGRS_2020_2987199 crossref_primary_10_1109_JSTARS_2021_3124321 crossref_primary_10_3390_app15020503 crossref_primary_10_1007_s10661_022_10118_4 crossref_primary_10_1007_s41060_023_00450_4 crossref_primary_10_1016_j_irbm_2021_06_009 crossref_primary_10_1109_TGRS_2021_3110601 crossref_primary_10_1088_1742_6596_1916_1_012029 crossref_primary_10_1109_ACCESS_2022_3232152 crossref_primary_10_1109_TGRS_2019_2946318 crossref_primary_10_1080_07038992_2020_1870217 crossref_primary_10_1109_TGRS_2019_2923213 crossref_primary_10_3390_rs14205118 crossref_primary_10_1109_TGRS_2023_3324947 crossref_primary_10_3390_rs13112216 crossref_primary_10_1109_TGRS_2023_3274778 crossref_primary_10_1088_1674_1056_ac8cd7 crossref_primary_10_2112_SI99_007_1 crossref_primary_10_1109_JSTARS_2021_3133009 crossref_primary_10_1109_LGRS_2023_3277347 crossref_primary_10_1049_cvi2_12218 crossref_primary_10_3390_su15097653 crossref_primary_10_1016_j_infrared_2023_104983 crossref_primary_10_1109_JSTARS_2021_3074469 crossref_primary_10_17482_uumfd_435723 crossref_primary_10_1134_S1054661819010085 crossref_primary_10_1109_JSTARS_2024_3455561 crossref_primary_10_1109_LGRS_2017_2657818 crossref_primary_10_1002_sam_11455 crossref_primary_10_1109_TGRS_2024_3430985 crossref_primary_10_3390_rs14051230 crossref_primary_10_3390_rs15133223 crossref_primary_10_52547_jgit_9_2_1 crossref_primary_10_1080_22797254_2018_1434424 crossref_primary_10_1109_JSTARS_2020_3008949 crossref_primary_10_1007_s11069_020_04264_6 crossref_primary_10_3390_rs13122268 crossref_primary_10_1080_01431161_2024_2343132 crossref_primary_10_1109_TGRS_2023_3241681 crossref_primary_10_1080_01431161_2024_2343133 crossref_primary_10_1109_JSTARS_2022_3192470 crossref_primary_10_1109_TGRS_2018_2818945 crossref_primary_10_1049_ipr2_12382 crossref_primary_10_1016_j_pce_2022_103286 crossref_primary_10_1016_j_ejrs_2023_09_002 crossref_primary_10_1016_j_foreco_2021_119493 crossref_primary_10_1080_07038992_2021_1926952 crossref_primary_10_3390_fi14010019 crossref_primary_10_3390_cancers11060756 crossref_primary_10_1109_TNNLS_2023_3264587 crossref_primary_10_3788_LOP240688 crossref_primary_10_3390_rs15030752 crossref_primary_10_1016_j_isprsjprs_2017_11_021 crossref_primary_10_1117_1_JRS_12_026028 crossref_primary_10_3390_electronics12030674 crossref_primary_10_3390_s23052856 crossref_primary_10_1364_OE_437717 crossref_primary_10_1109_LGRS_2024_3424986 crossref_primary_10_3390_rs13122253 crossref_primary_10_1109_TGRS_2024_3522110 crossref_primary_10_1109_TIP_2021_3118977 crossref_primary_10_1007_s12145_024_01415_2 crossref_primary_10_1109_TGRS_2017_2705073 crossref_primary_10_1117_1_JRS_12_016005 crossref_primary_10_3390_molecules23112831 crossref_primary_10_1016_j_yebeh_2024_110165 crossref_primary_10_3390_rs13214262 crossref_primary_10_3390_s22072687 crossref_primary_10_3390_electronics14040797 crossref_primary_10_1109_TGRS_2018_2827407 crossref_primary_10_1109_TGRS_2024_3367374 crossref_primary_10_1016_j_jvcir_2018_10_009 crossref_primary_10_1109_TIP_2017_2725580 crossref_primary_10_3390_agronomy13071723 crossref_primary_10_1080_01431161_2023_2249598 crossref_primary_10_1080_2150704X_2019_1686780 crossref_primary_10_1109_TGRS_2019_2893180 crossref_primary_10_1109_TGRS_2022_3199467 crossref_primary_10_1109_TGRS_2024_3367127 crossref_primary_10_1049_iet_com_2019_0687 crossref_primary_10_1109_TGRS_2018_2860464 crossref_primary_10_1109_TGRS_2023_3324977 crossref_primary_10_1007_s10278_019_00204_4 crossref_primary_10_3390_app14062327 crossref_primary_10_1109_TGRS_2024_3475635 crossref_primary_10_1109_TGRS_2023_3318071 crossref_primary_10_1007_s42401_022_00168_4 crossref_primary_10_1109_TGRS_2017_2756851 crossref_primary_10_3390_rs9030225 crossref_primary_10_3390_rs14236158 crossref_primary_10_3390_s20226666 crossref_primary_10_1016_j_ress_2020_107316 crossref_primary_10_1109_TGRS_2023_3242978 crossref_primary_10_1109_TGRS_2023_3275871 crossref_primary_10_3390_rs15051206 crossref_primary_10_1109_TGRS_2020_3022029 crossref_primary_10_1016_j_isprsjprs_2017_11_003 crossref_primary_10_1016_j_rse_2019_111350 crossref_primary_10_1016_j_neunet_2025_107311 crossref_primary_10_1109_JSTARS_2019_2898574 crossref_primary_10_1109_LGRS_2016_2608963 crossref_primary_10_1016_j_isprsjprs_2021_02_009 crossref_primary_10_1080_2150704X_2017_1331053 crossref_primary_10_3788_LOP230974 crossref_primary_10_1109_TGRS_2022_3225947 crossref_primary_10_3390_rs15040983 crossref_primary_10_32604_cmc_2023_031673 crossref_primary_10_1007_s11042_022_11954_9 crossref_primary_10_1117_1_JRS_12_016024 crossref_primary_10_1007_s11042_022_12633_5 crossref_primary_10_1080_17538947_2022_2108922 crossref_primary_10_1080_01431161_2021_1995074 crossref_primary_10_1109_JSTARS_2020_3046053 crossref_primary_10_1109_TGRS_2022_3153446 crossref_primary_10_1109_TGRS_2023_3237668 crossref_primary_10_1080_01431161_2019_1694194 crossref_primary_10_3390_rs11111307 crossref_primary_10_1109_TGRS_2022_3165441 crossref_primary_10_1109_TII_2024_3384609 crossref_primary_10_1109_JSTARS_2019_2915588 crossref_primary_10_3169_mta_12_190 crossref_primary_10_1109_TGRS_2025_3545949 crossref_primary_10_3390_s18071992 crossref_primary_10_1109_TGRS_2021_3079123 crossref_primary_10_3390_rs15153793 crossref_primary_10_3390_rs15153792 crossref_primary_10_1109_JSTARS_2024_3487360 crossref_primary_10_3390_rs12091489 crossref_primary_10_1109_TGRS_2021_3092351 crossref_primary_10_1016_j_ins_2017_08_051 crossref_primary_10_1109_TGRS_2022_3198130 crossref_primary_10_1080_22797254_2022_2075794 crossref_primary_10_1109_TGRS_2020_3026099 crossref_primary_10_3390_rs13163165 crossref_primary_10_1109_TGRS_2022_3207294 crossref_primary_10_1109_TIM_2023_3344142 crossref_primary_10_1109_LGRS_2023_3287188 crossref_primary_10_1109_TGRS_2022_3164341 crossref_primary_10_1109_TGRS_2024_3456129 crossref_primary_10_1109_TGRS_2024_3433025 crossref_primary_10_32604_cmc_2021_015605 crossref_primary_10_3390_rs12020280 crossref_primary_10_35193_bseufbd_741729 crossref_primary_10_1155_2017_2157243 crossref_primary_10_1080_2150704X_2021_1978582 crossref_primary_10_1109_JSTARS_2025_3527898 crossref_primary_10_1109_LGRS_2024_3409553 crossref_primary_10_1016_j_scs_2022_104032 crossref_primary_10_1117_1_JRS_12_016040 crossref_primary_10_1007_s11042_023_16456_w crossref_primary_10_1109_TGRS_2022_3232498 crossref_primary_10_3390_rs16234381 crossref_primary_10_1109_TGRS_2024_3409378 crossref_primary_10_1051_e3sconf_201914005012 crossref_primary_10_3390_rs15030720 crossref_primary_10_1109_JSTARS_2020_3035382 crossref_primary_10_3390_rs11080963 crossref_primary_10_1080_01431161_2024_2398822 crossref_primary_10_3390_rs16091615 crossref_primary_10_1155_2018_8602103 crossref_primary_10_26599_BDMA_2024_9020086 crossref_primary_10_1016_j_ejrs_2024_11_001 crossref_primary_10_1109_JSTARS_2024_3432743 crossref_primary_10_1109_TGRS_2023_3282247 crossref_primary_10_3390_rs10050783 crossref_primary_10_1080_01490419_2025_2478977 crossref_primary_10_1049_cit2_12181 crossref_primary_10_3390_s17020314 crossref_primary_10_1109_TGRS_2024_3390575 crossref_primary_10_1117_1_JRS_14_036519 crossref_primary_10_1049_ipr2_12632 crossref_primary_10_3390_rs16193730 crossref_primary_10_1109_TGRS_2023_3272639 crossref_primary_10_1109_TNNLS_2022_3158280 crossref_primary_10_1109_TIP_2024_3465038 crossref_primary_10_3390_rs13071269 crossref_primary_10_1109_JSTARS_2018_2844873 crossref_primary_10_1109_TGRS_2021_3084922 crossref_primary_10_1080_25726838_2019_1578031 crossref_primary_10_1109_JSTARS_2022_3187972 crossref_primary_10_1109_JSTARS_2022_3162423 crossref_primary_10_1109_TGRS_2022_3213513 crossref_primary_10_3390_electronics12245013 crossref_primary_10_1080_10106049_2023_2226112 crossref_primary_10_1080_01431161_2022_2142078 crossref_primary_10_1109_TGRS_2023_3321840 crossref_primary_10_3390_drones7040240 crossref_primary_10_3390_rs12193137 crossref_primary_10_1109_TGRS_2023_3303338 crossref_primary_10_3390_rs13132451 crossref_primary_10_1109_ACCESS_2023_3250447 crossref_primary_10_3390_f14030601 crossref_primary_10_1016_j_aca_2023_342158 crossref_primary_10_1016_j_asr_2024_08_049 crossref_primary_10_1109_TGRS_2020_3046757 crossref_primary_10_1007_s11042_022_12494_y crossref_primary_10_1109_TGRS_2022_3212682 crossref_primary_10_3390_app11188670 crossref_primary_10_1016_j_cviu_2024_104198 crossref_primary_10_3788_IRLA20240215 crossref_primary_10_1109_JSTARS_2023_3282975 crossref_primary_10_1016_j_neucom_2024_128877 crossref_primary_10_1109_JSTARS_2018_2886288 crossref_primary_10_3390_rs14194866 crossref_primary_10_1007_s00521_020_05069_1 crossref_primary_10_1109_TGRS_2019_2951160 crossref_primary_10_1109_TGRS_2022_3207098 crossref_primary_10_1016_j_paerosci_2023_100960 crossref_primary_10_1109_TGRS_2019_2910603 crossref_primary_10_1109_TGRS_2024_3370919 crossref_primary_10_1142_S1469026817500018 crossref_primary_10_1007_s10619_020_07309_8 crossref_primary_10_1109_LGRS_2022_3228531 crossref_primary_10_1016_j_compag_2021_106521 crossref_primary_10_1073_pnas_1719367115 crossref_primary_10_1109_ACCESS_2020_3008029 crossref_primary_10_1109_LGRS_2024_3431644 crossref_primary_10_1109_TIP_2025_3531709 crossref_primary_10_1109_TGRS_2023_3328263 crossref_primary_10_3390_rs16122152 crossref_primary_10_3390_s22176611 crossref_primary_10_1080_01431161_2021_2019851 crossref_primary_10_1007_s12303_020_0022_y crossref_primary_10_1080_10106049_2021_1953616 crossref_primary_10_3390_jimaging5050052 crossref_primary_10_1016_j_eswa_2021_115280 crossref_primary_10_1080_01431161_2021_2019849 crossref_primary_10_1109_TGRS_2023_3303319 crossref_primary_10_1109_ACCESS_2025_3543122 crossref_primary_10_1109_TGRS_2022_3203980 crossref_primary_10_1109_TGRS_2021_3087186 crossref_primary_10_1109_JSTARS_2021_3065687 crossref_primary_10_1109_LGRS_2019_2962582 crossref_primary_10_1109_JSTARS_2019_2938208 crossref_primary_10_1016_j_rse_2021_112665 crossref_primary_10_3390_rs15174255 crossref_primary_10_1016_j_jag_2023_103614 crossref_primary_10_1109_LGRS_2020_3024006 crossref_primary_10_1080_15481603_2018_1457201 crossref_primary_10_1109_TGRS_2022_3210280 crossref_primary_10_1007_s11263_024_02238_w crossref_primary_10_1016_j_cosrev_2024_100658 crossref_primary_10_1016_j_patcog_2019_04_009 crossref_primary_10_1109_TGRS_2020_3044312 crossref_primary_10_1109_TGRS_2023_3272885 crossref_primary_10_1109_ACCESS_2022_3194650 crossref_primary_10_1109_TGRS_2022_3141217 crossref_primary_10_3390_rs10020284 crossref_primary_10_1016_j_scitotenv_2023_163677 crossref_primary_10_1016_j_patrec_2018_10_003 crossref_primary_10_1109_ACCESS_2021_3095265 crossref_primary_10_1109_ACCESS_2020_2973856 crossref_primary_10_1109_TGRS_2020_3011429 crossref_primary_10_36548_jiip_2023_4_002 crossref_primary_10_1109_TGRS_2024_3353383 crossref_primary_10_3390_rs11202363 crossref_primary_10_1109_JSTARS_2020_2983224 crossref_primary_10_3390_rs15153701 crossref_primary_10_1002_cpe_6533 crossref_primary_10_3788_gzxb20235212_1210002 crossref_primary_10_3390_rs13040718 crossref_primary_10_1007_s11042_022_13476_w crossref_primary_10_1109_TGRS_2021_3100578 crossref_primary_10_3390_s20143961 crossref_primary_10_1109_LGRS_2021_3089278 crossref_primary_10_3390_rs9060629 crossref_primary_10_1007_s12517_022_10246_8 crossref_primary_10_1016_j_jcmds_2022_100070 crossref_primary_10_1016_j_saa_2022_121418 crossref_primary_10_3389_fmars_2024_1455604 crossref_primary_10_1109_TGRS_2024_3487296 crossref_primary_10_1080_2150704X_2019_1681598 crossref_primary_10_3390_rs12121964 crossref_primary_10_1007_s00146_019_00934_7 crossref_primary_10_3390_molecules27186042 crossref_primary_10_1109_JSTARS_2020_2968930 crossref_primary_10_3389_frsen_2024_1374862 crossref_primary_10_1109_TGRS_2021_3052048 crossref_primary_10_3390_s24206647 crossref_primary_10_1049_iet_ipr_2017_1375 crossref_primary_10_1016_j_rsase_2023_100986 crossref_primary_10_1007_s11063_018_9876_7 crossref_primary_10_1109_TGRS_2020_3014286 crossref_primary_10_1117_1_JRS_17_038503 crossref_primary_10_1093_pnasnexus_pgac164 crossref_primary_10_3390_rs16122185 crossref_primary_10_1038_s41598_025_90926_z crossref_primary_10_1080_01431161_2025_2457130 crossref_primary_10_1109_TGRS_2019_2899129 crossref_primary_10_1007_s13042_022_01767_5 crossref_primary_10_1109_LGRS_2023_3236672 crossref_primary_10_3390_s17102421 crossref_primary_10_1080_01431161_2024_2318767 crossref_primary_10_1109_TGRS_2023_3334289 crossref_primary_10_1007_s10043_019_00528_0 crossref_primary_10_1109_TGRS_2020_3018879 crossref_primary_10_3390_rs14010053 crossref_primary_10_33793_acperpro_03_01_89 crossref_primary_10_1109_TGRS_2018_2863224 crossref_primary_10_1007_s11227_025_07096_y crossref_primary_10_1109_JSTARS_2022_3173349 crossref_primary_10_1109_TGRS_2022_3196311 crossref_primary_10_1109_JSTARS_2018_2836671 crossref_primary_10_3390_s20236936 crossref_primary_10_1109_TGRS_2022_3147198 crossref_primary_10_1016_j_rse_2024_114291 crossref_primary_10_1109_TGRS_2021_3066485 crossref_primary_10_1080_01431161_2019_1597310 crossref_primary_10_1007_s11063_024_11631_y crossref_primary_10_3390_rs13173393 crossref_primary_10_3390_rs13163117 crossref_primary_10_3390_rs15184471 crossref_primary_10_1109_TGRS_2020_2973363 crossref_primary_10_1109_TGRS_2022_3140324 crossref_primary_10_1016_j_gexplo_2024_107611 crossref_primary_10_1080_10106049_2021_1882006 crossref_primary_10_3390_rs11131566 crossref_primary_10_3390_rs15163960 crossref_primary_10_1109_TGRS_2022_3184117 crossref_primary_10_1080_01431161_2019_1615652 crossref_primary_10_1109_LGRS_2020_2989437 crossref_primary_10_1109_TGRS_2019_2908756 crossref_primary_10_1007_s12161_023_02459_8 crossref_primary_10_3390_rs11131565 crossref_primary_10_3390_ijgi6110344 crossref_primary_10_1109_TGRS_2020_2964627 crossref_primary_10_1155_2022_7071485 crossref_primary_10_1109_JSTARS_2020_2974577 crossref_primary_10_3390_rs16010022 crossref_primary_10_1016_j_saa_2024_124295 crossref_primary_10_1109_JSTARS_2021_3056124 crossref_primary_10_1038_s41598_024_56491_7 crossref_primary_10_1109_ACCESS_2020_3004968 crossref_primary_10_1109_TGRS_2024_3502055 crossref_primary_10_3390_rs15184412 crossref_primary_10_1155_2017_5169675 crossref_primary_10_61186_jgit_11_1_59 crossref_primary_10_1109_JSTARS_2024_3492351 crossref_primary_10_1109_TGRS_2022_3221534 crossref_primary_10_3390_mining4040057 crossref_primary_10_1109_TGRS_2022_3169163 crossref_primary_10_1109_JSTARS_2023_3342461 crossref_primary_10_1109_TGRS_2020_3018449 crossref_primary_10_1109_ACCESS_2019_2923776 crossref_primary_10_3390_rs15123084 crossref_primary_10_34133_plantphenomics_0129 crossref_primary_10_1109_TGRS_2021_3138742 crossref_primary_10_1109_LGRS_2022_3206917 crossref_primary_10_1109_JSTARS_2022_3226758 crossref_primary_10_1109_JSTARS_2022_3145917 crossref_primary_10_1109_JSTARS_2025_3533211 crossref_primary_10_1016_j_neucom_2021_07_015 crossref_primary_10_1016_j_ins_2019_10_069 crossref_primary_10_1109_MGRS_2019_2912563 crossref_primary_10_1109_TNNLS_2023_3340561 crossref_primary_10_3390_electronics13020262 crossref_primary_10_1109_LGRS_2024_3494552 crossref_primary_10_3390_s24227131 crossref_primary_10_1155_2020_8065396 crossref_primary_10_1109_JSTARS_2020_3024841 crossref_primary_10_1109_TIP_2022_3144017 crossref_primary_10_3390_rs15153721 crossref_primary_10_1109_TGRS_2017_2783886 crossref_primary_10_1109_TGRS_2025_3542422 crossref_primary_10_3390_jimaging6120132 crossref_primary_10_3390_f15040691 crossref_primary_10_3390_rs16162892 crossref_primary_10_1016_j_infrared_2024_105251 crossref_primary_10_1109_LGRS_2023_3323706 crossref_primary_10_1016_j_geoderma_2021_115366 crossref_primary_10_1016_j_ins_2021_07_043 crossref_primary_10_1109_LGRS_2019_2916083 crossref_primary_10_1109_LGRS_2019_2945848 crossref_primary_10_1109_JSTARS_2022_3185125 crossref_primary_10_1109_TGRS_2024_3468311 crossref_primary_10_1109_JSTARS_2021_3115129 crossref_primary_10_3390_rs16060937 crossref_primary_10_1109_TIM_2023_3293548 crossref_primary_10_1016_j_foodcont_2020_107332 crossref_primary_10_3390_min13060766 crossref_primary_10_1080_1206212X_2024_2441147 crossref_primary_10_1109_JSTARS_2024_3371909 crossref_primary_10_3390_app9204312 crossref_primary_10_1016_j_isprsjprs_2019_04_016 crossref_primary_10_30897_ijegeo_684951 crossref_primary_10_3390_app13010492 crossref_primary_10_1016_j_infrared_2020_103340 crossref_primary_10_1016_j_eswa_2022_117342 crossref_primary_10_1109_TGRS_2023_3254159 crossref_primary_10_1109_TGRS_2023_3279437 crossref_primary_10_3103_S0146411618060123 crossref_primary_10_1109_TIM_2018_2887069 crossref_primary_10_1080_00387010_2022_2076698 crossref_primary_10_1080_2150704X_2019_1579936 crossref_primary_10_3390_rs16244788 crossref_primary_10_3390_pr11020435 crossref_primary_10_1109_JSTARS_2019_2900705 crossref_primary_10_1016_j_ejrs_2020_08_001 crossref_primary_10_1080_2150704X_2017_1420265 crossref_primary_10_1109_TGRS_2022_3223508 crossref_primary_10_1109_JSTARS_2024_3422078 crossref_primary_10_1109_JSTARS_2023_3328389 crossref_primary_10_1109_TGRS_2023_3281511 crossref_primary_10_3390_rs16020287 crossref_primary_10_3390_rs14030608 crossref_primary_10_1109_TGRS_2020_3014313 crossref_primary_10_1016_j_neucom_2019_05_019 crossref_primary_10_32604_iasc_2023_029923 crossref_primary_10_3390_rs15071803 crossref_primary_10_1109_TPAMI_2024_3399753 crossref_primary_10_3390_rs12030547 crossref_primary_10_1016_j_infrared_2020_103296 crossref_primary_10_3390_rs16010067 crossref_primary_10_1109_JSTARS_2023_3328115 crossref_primary_10_1080_2150704X_2019_1635287 crossref_primary_10_1109_TGRS_2019_2907932 crossref_primary_10_3390_diagnostics12092225 crossref_primary_10_3390_rs11182170 crossref_primary_10_1016_j_gsme_2024_09_003 crossref_primary_10_1109_JSTARS_2022_3233125 crossref_primary_10_3390_rs13183561 crossref_primary_10_1109_TGRS_2022_3185612 crossref_primary_10_1007_s10462_021_10018_y crossref_primary_10_1109_JSTARS_2023_3283342 crossref_primary_10_1080_22797254_2021_1942225 crossref_primary_10_1109_JSTARS_2023_3321965 crossref_primary_10_1109_TGRS_2023_3310489 crossref_primary_10_3390_rs14174288 crossref_primary_10_1080_01431161_2024_2305179 crossref_primary_10_1080_01431161_2023_2171744 crossref_primary_10_1080_01431161_2023_2171742 crossref_primary_10_2196_67256 crossref_primary_10_1016_j_sigpro_2019_107361 crossref_primary_10_3390_rs14246406 crossref_primary_10_1016_j_procs_2024_04_241 crossref_primary_10_1016_j_jfranklin_2025_107532 crossref_primary_10_1109_TGRS_2024_3369075 crossref_primary_10_1109_TGRS_2024_3397740 crossref_primary_10_3390_rs14153555 crossref_primary_10_3390_rs14153796 crossref_primary_10_3390_rs13081568 crossref_primary_10_3390_rs15194796 crossref_primary_10_1109_ACCESS_2022_3231579 crossref_primary_10_3390_rs13183590 crossref_primary_10_1117_1_JRS_12_035003 crossref_primary_10_1142_S0219467823500365 crossref_primary_10_1109_TGRS_2020_3005623 crossref_primary_10_1109_TGRS_2023_3314616 crossref_primary_10_3390_s24237683 crossref_primary_10_1016_j_rse_2019_05_023 crossref_primary_10_1080_19479832_2024_2425710 crossref_primary_10_1109_TGRS_2020_2999957 crossref_primary_10_1364_AO_420688 crossref_primary_10_3390_rs15133366 crossref_primary_10_3390_rs15020428 crossref_primary_10_1109_TGRS_2023_3332051 crossref_primary_10_1016_j_eswa_2021_114708 crossref_primary_10_3390_rs12203408 crossref_primary_10_3390_rs13020162 crossref_primary_10_1109_ACCESS_2022_3188853 crossref_primary_10_1016_j_infrared_2024_105569 crossref_primary_10_3390_rs12030536 crossref_primary_10_1049_ipr2_12087 crossref_primary_10_1109_TGRS_2023_3308123 crossref_primary_10_1109_TGRS_2024_3445935 crossref_primary_10_1109_LGRS_2019_2923647 crossref_primary_10_1007_s12204_023_2645_4 crossref_primary_10_3390_rs13173547 crossref_primary_10_1080_01431161_2020_1734249 crossref_primary_10_1016_j_eswa_2023_119508 crossref_primary_10_1016_j_microc_2024_109981 crossref_primary_10_1109_TGRS_2016_2616355 crossref_primary_10_3390_rs11091044 crossref_primary_10_1109_TGRS_2020_2987905 crossref_primary_10_3390_rs15225331 crossref_primary_10_1109_TIP_2022_3192712 crossref_primary_10_1109_ACCESS_2020_2999865 crossref_primary_10_1007_s10776_019_00440_z crossref_primary_10_1080_22797254_2019_1634980 crossref_primary_10_3233_JIFS_169918 crossref_primary_10_3390_s20185322 crossref_primary_10_1109_LGRS_2017_2786272 crossref_primary_10_3390_rs12142335 crossref_primary_10_3390_rs16163002 crossref_primary_10_1109_TGRS_2022_3149947 crossref_primary_10_1109_TGRS_2024_3352812 crossref_primary_10_3390_rs11050546 crossref_primary_10_3390_rs14174235 crossref_primary_10_1016_j_jag_2022_102906 crossref_primary_10_1109_TIP_2022_3177322 crossref_primary_10_1109_JBHI_2019_2905623 crossref_primary_10_1109_JSTARS_2022_3225928 crossref_primary_10_1016_j_compag_2024_109576 crossref_primary_10_1255_jsi_2021_a2 crossref_primary_10_3390_a13030061 crossref_primary_10_1080_05704928_2021_1999252 crossref_primary_10_1109_LGRS_2020_3045744 crossref_primary_10_1371_journal_pone_0293303 crossref_primary_10_1016_j_micron_2019_102798 crossref_primary_10_3390_rs15123123 crossref_primary_10_1109_TIP_2017_2772836 crossref_primary_10_1364_JOSAA_478585 crossref_primary_10_1109_TGRS_2024_3488202 crossref_primary_10_1109_TGRS_2021_3133454 crossref_primary_10_3390_rs12101620 crossref_primary_10_1080_1573062X_2023_2255168 crossref_primary_10_1109_TGRS_2024_3440271 crossref_primary_10_1016_j_neucom_2022_06_031 crossref_primary_10_1016_j_rse_2020_111938 crossref_primary_10_3934_mfc_2021003 crossref_primary_10_1109_TNNLS_2023_3345734 crossref_primary_10_3390_rs15051399 crossref_primary_10_3390_app9224890 crossref_primary_10_1021_acs_analchem_8b05962 crossref_primary_10_1039_D1RA07662K crossref_primary_10_1109_TGRS_2024_3472091 crossref_primary_10_1109_TGRS_2020_3013285 crossref_primary_10_1109_LGRS_2021_3084203 crossref_primary_10_3390_app14051701 crossref_primary_10_1109_TGRS_2019_2957135 crossref_primary_10_1109_TGRS_2017_2689018 crossref_primary_10_3390_s23115148 crossref_primary_10_1016_j_jag_2021_102603 crossref_primary_10_3390_w15203557 crossref_primary_10_3390_rs14071569 crossref_primary_10_3390_rs14225778 crossref_primary_10_1109_JSTARS_2024_3403863 crossref_primary_10_1080_17538947_2023_2229793 crossref_primary_10_3390_rs14092265 crossref_primary_10_1109_TGRS_2021_3123423 crossref_primary_10_1109_TGRS_2023_3284074 crossref_primary_10_3233_ICA_210657 crossref_primary_10_1016_j_ijleo_2022_169527 crossref_primary_10_1007_s12517_021_07791_z crossref_primary_10_1109_TGRS_2024_3351997 crossref_primary_10_1109_TGRS_2024_3361555 crossref_primary_10_1109_TGRS_2020_3048128 crossref_primary_10_3390_rs14246224 crossref_primary_10_1109_TSC_2019_2916416 crossref_primary_10_1109_MGRS_2022_3169947 crossref_primary_10_1109_TGRS_2023_3264235 crossref_primary_10_3390_plants8110468 crossref_primary_10_1016_j_aiia_2024_10_002 crossref_primary_10_1016_j_compag_2022_107474 crossref_primary_10_1109_TGRS_2023_3244805 crossref_primary_10_1109_TGRS_2018_2872830 crossref_primary_10_1049_iet_ipr_2019_0869 crossref_primary_10_1109_JSTARS_2024_3355071 crossref_primary_10_3390_plants13202876 crossref_primary_10_3390_s17061341 crossref_primary_10_1007_s40860_020_00099_x crossref_primary_10_1007_s11042_023_15017_5 crossref_primary_10_1111_coin_12611 crossref_primary_10_3389_feart_2022_988556 crossref_primary_10_3390_s18093153 crossref_primary_10_3390_s18093169 crossref_primary_10_3390_rs14205251 crossref_primary_10_1109_JSTARS_2021_3103744 crossref_primary_10_3390_rs11161896 crossref_primary_10_1016_j_patrec_2021_01_015 crossref_primary_10_1109_TGRS_2017_2675902 crossref_primary_10_1007_s11042_020_10169_0 crossref_primary_10_1016_j_isprsjprs_2018_05_014 crossref_primary_10_3390_rs16214055 crossref_primary_10_1080_01431161_2022_2089069 crossref_primary_10_1155_2024_5926658 crossref_primary_10_1109_TIM_2023_3279922 crossref_primary_10_1016_j_rse_2019_111411 crossref_primary_10_48130_TIH_2023_0027 crossref_primary_10_1177_1729881419842991 crossref_primary_10_1155_2020_9765975 crossref_primary_10_1364_OE_446767 crossref_primary_10_3390_s24237834 crossref_primary_10_1109_LGRS_2022_3224933 crossref_primary_10_1080_2150704X_2019_1569274 crossref_primary_10_1109_TGRS_2024_3493387 crossref_primary_10_1109_TNNLS_2022_3155114 crossref_primary_10_3390_ijgi8090417 crossref_primary_10_3390_rs14112612 crossref_primary_10_3390_diagnostics11081508 crossref_primary_10_3103_S1060992X24700668 crossref_primary_10_3390_rs13214342 crossref_primary_10_1109_TGRS_2018_2837142 crossref_primary_10_1016_j_engappai_2023_106993 crossref_primary_10_3390_fire6100395 crossref_primary_10_3390_rs13020324 crossref_primary_10_1007_s11042_018_5714_1 crossref_primary_10_3390_s19071486 crossref_primary_10_1007_s10489_024_06139_w crossref_primary_10_3390_rs14194732 crossref_primary_10_1080_01431161_2016_1159745 crossref_primary_10_3390_rs13132599 crossref_primary_10_1109_TGRS_2020_3046780 crossref_primary_10_1016_j_knosys_2020_106319 crossref_primary_10_1016_j_acags_2020_100034 crossref_primary_10_1109_MGRS_2016_2540798 crossref_primary_10_1364_OE_550150 crossref_primary_10_3390_rs12101640 crossref_primary_10_1109_TGRS_2023_3304836 crossref_primary_10_1109_TGRS_2022_3187187 crossref_primary_10_1364_OE_27_023029 crossref_primary_10_1109_TNNLS_2023_3265560 crossref_primary_10_1080_2150704X_2024_2320177 crossref_primary_10_1109_JSTSP_2021_3063805 crossref_primary_10_1155_2021_5592614 crossref_primary_10_1007_s41870_022_01075_9 crossref_primary_10_1109_TGRS_2018_2827308 crossref_primary_10_1080_15481603_2018_1426091 crossref_primary_10_1109_LGRS_2022_3185743 crossref_primary_10_1109_TNNLS_2020_3028945 crossref_primary_10_3390_rs14194910 crossref_primary_10_1117_1_JEI_32_2_021610 crossref_primary_10_3390_rs16214001 crossref_primary_10_1109_TGRS_2020_3047682 crossref_primary_10_1016_j_knosys_2019_105122 crossref_primary_10_3390_ijgi7090349 crossref_primary_10_1109_TGRS_2023_3317079 crossref_primary_10_1117_1_JRS_14_048504 crossref_primary_10_1109_ACCESS_2019_2925283 crossref_primary_10_1007_s11069_024_06764_1 crossref_primary_10_3390_rs14112678 crossref_primary_10_1186_s13638_019_1594_y crossref_primary_10_1109_MGRS_2017_2762307 crossref_primary_10_3390_rs14236017 crossref_primary_10_1109_ACCESS_2022_3201537 crossref_primary_10_1109_TGRS_2023_3301310 crossref_primary_10_3390_s24144714 crossref_primary_10_1109_JSTARS_2020_3042959 crossref_primary_10_1109_TGRS_2020_3045273 crossref_primary_10_3390_rs15112879 crossref_primary_10_1109_TGRS_2022_3207933 crossref_primary_10_3390_rs13030335 crossref_primary_10_3390_rs11192326 crossref_primary_10_1117_1_JEI_26_2_023012 crossref_primary_10_1109_TGRS_2023_3298848 crossref_primary_10_1007_s44196_023_00370_y crossref_primary_10_1109_TGRS_2018_2838665 crossref_primary_10_1016_j_scitotenv_2024_176630 crossref_primary_10_1155_2021_9938584 crossref_primary_10_3390_agronomy11081554 crossref_primary_10_1080_22797254_2024_2330979 crossref_primary_10_1007_s41019_020_00126_0 crossref_primary_10_2139_ssrn_4162664 crossref_primary_10_1049_iet_ipr_2018_5727 crossref_primary_10_1109_TIP_2024_3522809 crossref_primary_10_1109_TGRS_2020_3048994 crossref_primary_10_3390_rs14112653 crossref_primary_10_1109_TGRS_2023_3300688 crossref_primary_10_1007_s10846_022_01602_7 crossref_primary_10_1080_22797254_2021_2010605 crossref_primary_10_3390_s20185191 crossref_primary_10_1109_TGRS_2019_2921342 crossref_primary_10_1109_LGRS_2022_3172410 crossref_primary_10_1109_TGRS_2024_3477933 crossref_primary_10_1109_ACCESS_2020_2986514 crossref_primary_10_1109_JSTARS_2025_3529985 crossref_primary_10_3390_rs10122036 crossref_primary_10_3390_rs14030657 crossref_primary_10_1080_01431161_2022_2109222 crossref_primary_10_1109_TGRS_2020_3034133 crossref_primary_10_1016_j_jag_2022_102744 crossref_primary_10_1109_TGRS_2024_3443953 crossref_primary_10_1109_TGRS_2018_2841823 crossref_primary_10_3390_rs11030223 crossref_primary_10_3390_rs14164066 crossref_primary_10_1016_j_asr_2023_04_025 crossref_primary_10_3390_en17071628 crossref_primary_10_1109_TGRS_2017_2693346 crossref_primary_10_1007_s00371_024_03728_1 crossref_primary_10_3390_rs14030666 crossref_primary_10_3390_rs13122353 crossref_primary_10_3390_rs15133338 crossref_primary_10_1109_JSTARS_2021_3063679 crossref_primary_10_1155_2022_7549397 crossref_primary_10_1016_j_cageo_2020_104519 crossref_primary_10_1109_TGRS_2018_2875943 crossref_primary_10_3390_rs16030592 crossref_primary_10_1016_j_isprsjprs_2024_01_016 crossref_primary_10_1016_j_jag_2022_103005 crossref_primary_10_1109_LGRS_2022_3182156 crossref_primary_10_1016_j_sigpro_2023_109153 crossref_primary_10_3390_rs12203294 crossref_primary_10_3390_rs12203292 crossref_primary_10_3934_mbe_2020195 crossref_primary_10_1109_TGRS_2022_3213838 crossref_primary_10_3390_rs13163055 crossref_primary_10_1016_j_rse_2024_114314 crossref_primary_10_1109_TGRS_2023_3286950 crossref_primary_10_1109_TGRS_2021_3058549 crossref_primary_10_3390_rs14184523 crossref_primary_10_1109_TGRS_2021_3058321 crossref_primary_10_3390_rs14215334 crossref_primary_10_1109_TIP_2024_3492724 crossref_primary_10_1016_j_sigpro_2024_109669 crossref_primary_10_1364_BOE_455208 crossref_primary_10_1117_1_JBO_22_6_060503 crossref_primary_10_1088_1742_6596_2273_1_012028 crossref_primary_10_1109_JSTARS_2025_3530935 crossref_primary_10_1109_TIP_2018_2799324 crossref_primary_10_1109_TGRS_2021_3073932 crossref_primary_10_1109_TGRS_2019_2934760 crossref_primary_10_1016_j_softx_2023_101340 crossref_primary_10_1109_TGRS_2020_3046840 crossref_primary_10_3390_su151813786 crossref_primary_10_1109_TIM_2023_3277100 crossref_primary_10_1109_JSTARS_2023_3290678 crossref_primary_10_1109_ACCESS_2023_3253627 crossref_primary_10_1109_JSTARS_2021_3101511 crossref_primary_10_1109_TGRS_2024_3361906 crossref_primary_10_3390_rs11202454 crossref_primary_10_3390_rs16224225 crossref_primary_10_1016_j_dsp_2021_103016 crossref_primary_10_3390_jmse11071265 crossref_primary_10_1038_s41598_022_25735_9 crossref_primary_10_1016_j_jhydrol_2019_124482 crossref_primary_10_3390_rs15051302 crossref_primary_10_1080_17538947_2021_2017035 crossref_primary_10_1109_JSTARS_2024_3440254 crossref_primary_10_1109_JSTARS_2021_3099118 crossref_primary_10_1109_TAES_2018_2883879 crossref_primary_10_1109_TGRS_2019_2900509 crossref_primary_10_1016_j_eswa_2019_04_006 crossref_primary_10_1109_JSTARS_2018_2866595 crossref_primary_10_1109_JSTARS_2021_3121334 crossref_primary_10_1109_LGRS_2019_2951372 crossref_primary_10_1007_s11042_021_11015_7 crossref_primary_10_1109_TGRS_2021_3102034 crossref_primary_10_1109_TPS_2023_3297579 crossref_primary_10_3390_rs12091395 crossref_primary_10_1002_widm_1264 crossref_primary_10_1109_TGRS_2023_3280183 crossref_primary_10_1109_TGRS_2022_3176216 crossref_primary_10_1177_20552076241297053 crossref_primary_10_3390_rs9030298 crossref_primary_10_1111_1556_4029_14909 crossref_primary_10_3390_rs16224202 crossref_primary_10_1016_j_ins_2022_04_006 crossref_primary_10_1016_j_sab_2021_106183 crossref_primary_10_1080_01431161_2022_2054299 crossref_primary_10_3390_ijerph20043059 crossref_primary_10_3390_rs14081951 crossref_primary_10_1007_s12517_021_07995_3 crossref_primary_10_17341_gazimmfd_479086 crossref_primary_10_3390_rs16162942 crossref_primary_10_1155_2020_9673724 crossref_primary_10_3390_rs13142790 crossref_primary_10_1109_ACCESS_2022_3172501 crossref_primary_10_1109_JSTARS_2021_3088228 crossref_primary_10_1007_s11042_021_11422_w crossref_primary_10_1080_01431161_2018_1547932 crossref_primary_10_1109_LGRS_2017_2764915 crossref_primary_10_1109_LGRS_2017_2681128 crossref_primary_10_3390_rs10071156 crossref_primary_10_1080_01431161_2022_2135412 crossref_primary_10_1109_TGRS_2024_3511033 crossref_primary_10_1007_s12517_021_06516_6 crossref_primary_10_3390_ijgi8040160 crossref_primary_10_1109_TGRS_2018_2865953 crossref_primary_10_1109_TIP_2023_3244414 crossref_primary_10_1109_LGRS_2022_3141870 crossref_primary_10_1109_TGRS_2024_3474736 crossref_primary_10_1109_TGRS_2020_3045790 crossref_primary_10_1109_TGRS_2023_3345923 crossref_primary_10_1109_TGRS_2022_3176637 crossref_primary_10_1109_JSTARS_2019_2915259 crossref_primary_10_1117_1_JRS_18_016509 crossref_primary_10_1007_s11760_024_03044_0 crossref_primary_10_1016_j_foodres_2021_110577 crossref_primary_10_3390_rs13071368 crossref_primary_10_1016_j_infrared_2022_104083 crossref_primary_10_1080_01431161_2024_2307943 crossref_primary_10_1109_TGRS_2024_3364143 crossref_primary_10_1007_s41064_020_00124_x crossref_primary_10_1007_s11042_023_15444_4 crossref_primary_10_3788_LOP240832 crossref_primary_10_1109_TGRS_2019_2949180 crossref_primary_10_1109_TGRS_2023_3320657 crossref_primary_10_1109_JSTARS_2018_2810320 crossref_primary_10_3390_electronics12132991 crossref_primary_10_3390_en12071280 crossref_primary_10_1038_s41598_017_07337_y crossref_primary_10_3390_rs13050898 crossref_primary_10_1080_01431161_2023_2275325 crossref_primary_10_1109_TGRS_2020_2974134 crossref_primary_10_3390_rs15184391 crossref_primary_10_1049_cvi2_12073 crossref_primary_10_1109_LGRS_2018_2834522 crossref_primary_10_1109_TGRS_2017_2748160 crossref_primary_10_1016_j_geoderma_2023_116521 crossref_primary_10_1007_s00371_019_01753_z crossref_primary_10_1109_TGRS_2024_3356524 crossref_primary_10_1016_j_inffus_2024_102383 crossref_primary_10_1109_TGRS_2023_3258488 crossref_primary_10_32604_cmc_2024_056706 crossref_primary_10_3390_app14188500 crossref_primary_10_1109_TIP_2021_3055613 crossref_primary_10_1109_LGRS_2024_3398439 crossref_primary_10_32604_cmes_2022_020601 crossref_primary_10_3390_rs14091968 crossref_primary_10_3390_ani8050066 crossref_primary_10_3390_s19245401 crossref_primary_10_1109_LGRS_2022_3217775 crossref_primary_10_1007_s13131_019_1445_z crossref_primary_10_1039_D2AN01035F crossref_primary_10_1109_JSTARS_2020_3004973 crossref_primary_10_1109_TGRS_2019_2908679 crossref_primary_10_1109_TGRS_2022_3183189 crossref_primary_10_1109_TGRS_2021_3057689 crossref_primary_10_1080_2150704X_2019_1649736 crossref_primary_10_1109_TBDATA_2019_2934475 crossref_primary_10_3390_rs15123177 crossref_primary_10_1007_s11432_019_2805_y crossref_primary_10_1109_ACCESS_2019_2916095 crossref_primary_10_1109_TGRS_2022_3233847 crossref_primary_10_1088_1755_1315_1138_1_012040 crossref_primary_10_1016_j_engappai_2024_108669 crossref_primary_10_1109_TGRS_2020_3040203 crossref_primary_10_1109_TGRS_2025_3541879 crossref_primary_10_1007_s11227_022_04961_y crossref_primary_10_1109_JSTARS_2022_3188732 crossref_primary_10_1007_s11760_023_02968_3 crossref_primary_10_3390_e23010020 crossref_primary_10_1007_s12596_023_01473_7 crossref_primary_10_1109_TCSVT_2024_3386578 crossref_primary_10_1109_TCYB_2020_3032958 crossref_primary_10_1109_TGRS_2022_3208897 crossref_primary_10_3390_rs12223733 crossref_primary_10_1007_s40010_017_0433_y crossref_primary_10_1002_ece3_10454 crossref_primary_10_1109_TGRS_2020_2967821 crossref_primary_10_1109_JSTARS_2021_3109600 crossref_primary_10_1109_JSTARS_2021_3120659 crossref_primary_10_1016_j_engappai_2023_107070 crossref_primary_10_1080_2150704X_2021_1992034 crossref_primary_10_1109_TGRS_2024_3386579 crossref_primary_10_1007_s00521_019_04282_x crossref_primary_10_1080_22797254_2023_2262738 crossref_primary_10_3390_rs11222690 crossref_primary_10_1016_j_asoc_2021_107563 crossref_primary_10_1016_j_ins_2024_121504 crossref_primary_10_1109_TGRS_2021_3090429 crossref_primary_10_1109_TGRS_2023_3241193 crossref_primary_10_1109_LGRS_2022_3204442 crossref_primary_10_1016_j_saa_2022_121560 crossref_primary_10_12677_csa_2024_148179 crossref_primary_10_3390_rs15102497 crossref_primary_10_1002_widm_1426 crossref_primary_10_1109_LGRS_2020_2991405 crossref_primary_10_3390_f10090818 crossref_primary_10_3390_app13127143 crossref_primary_10_3390_rs13040820 crossref_primary_10_1080_10106049_2020_1734871 crossref_primary_10_1038_s41598_024_64636_x crossref_primary_10_1109_ACCESS_2020_3027776 crossref_primary_10_1109_TGRS_2024_3463187 crossref_primary_10_3390_a17050182 crossref_primary_10_3389_fnut_2024_1325934 crossref_primary_10_1016_j_neucom_2016_09_010 crossref_primary_10_1080_10408347_2023_2207652 crossref_primary_10_1016_j_engappai_2023_107280 crossref_primary_10_3390_rs11222673 crossref_primary_10_3390_rs12142327 crossref_primary_10_1109_TGRS_2025_3543821 crossref_primary_10_1155_2021_8857931 crossref_primary_10_1109_TIP_2018_2809606 crossref_primary_10_3390_rs16183412 crossref_primary_10_1016_j_isprsjprs_2021_08_010 crossref_primary_10_3390_rs11070883 crossref_primary_10_1109_TIM_2023_3342225 crossref_primary_10_1007_s11227_023_05568_7 crossref_primary_10_1016_j_eswa_2023_119904 crossref_primary_10_1109_TGRS_2017_2769673 crossref_primary_10_1016_j_ins_2019_03_055 crossref_primary_10_1109_JSTARS_2019_2913097 crossref_primary_10_1111_jmi_13012 crossref_primary_10_1093_insilicoplants_diab017 crossref_primary_10_3390_rs14040818 crossref_primary_10_1080_2150704X_2020_1717014 crossref_primary_10_1109_JSTARS_2022_3174135 crossref_primary_10_3390_rs13020198 crossref_primary_10_1109_TGRS_2022_3202908 crossref_primary_10_1109_LGRS_2022_3169815 crossref_primary_10_1109_TGRS_2019_2948031 crossref_primary_10_1016_j_chemolab_2022_104538 crossref_primary_10_3390_rs14122907 crossref_primary_10_1080_23311916_2020_1857500 crossref_primary_10_12677_AAM_2020_911244 crossref_primary_10_1038_s41598_022_05422_5 crossref_primary_10_1080_2150704X_2018_1511933 crossref_primary_10_1109_LGRS_2021_3062944 crossref_primary_10_3390_diagnostics11101810 crossref_primary_10_1080_22797254_2023_2227993 crossref_primary_10_1016_j_jvcir_2022_103693 crossref_primary_10_1080_00387010_2025_2476011 crossref_primary_10_1109_LGRS_2019_2892117 crossref_primary_10_1109_TGRS_2021_3056722 crossref_primary_10_1016_j_eswa_2025_126811 crossref_primary_10_1088_1755_1315_502_1_012015 crossref_primary_10_1088_1755_1315_502_1_012014 crossref_primary_10_3390_rs16234411 crossref_primary_10_1007_s11042_020_10141_y crossref_primary_10_1155_2017_5046727 crossref_primary_10_1109_TGRS_2018_2832228 crossref_primary_10_1109_TIM_2024_3406811 crossref_primary_10_1109_TGRS_2021_3091985 crossref_primary_10_1109_TGRS_2023_3343909 crossref_primary_10_1109_TGRS_2021_3090410 crossref_primary_10_1109_TGRS_2023_3265388 crossref_primary_10_3390_jimaging9070141 crossref_primary_10_1109_TGRS_2021_3090413 crossref_primary_10_1016_j_landurbplan_2024_105122 crossref_primary_10_1109_TGRS_2022_3184691 crossref_primary_10_1016_j_jag_2022_103022 crossref_primary_10_1109_TGRS_2018_2886022 crossref_primary_10_1109_TGRS_2024_3377610 crossref_primary_10_3390_rs13224621 crossref_primary_10_1080_01431161_2023_2209268 crossref_primary_10_1109_TGRS_2024_3362356 crossref_primary_10_1016_j_image_2019_05_004 crossref_primary_10_1109_JSTARS_2025_3533302 crossref_primary_10_1109_TGRS_2024_3385478 crossref_primary_10_1109_TGRS_2024_3386566 crossref_primary_10_1109_TGRS_2021_3051056 crossref_primary_10_1080_01431161_2022_2105668 crossref_primary_10_1109_TGRS_2020_2981051 crossref_primary_10_3390_rs11060654 crossref_primary_10_3390_rs12010188 crossref_primary_10_1016_j_envsoft_2020_104751 crossref_primary_10_1109_TIM_2020_3011777 crossref_primary_10_20948_prepr_2018_282 crossref_primary_10_1021_acsnano_0c08974 crossref_primary_10_1080_01431161_2020_1752413 crossref_primary_10_3390_s20174975 crossref_primary_10_52547_jgit_9_4_109 crossref_primary_10_1117_1_JEI_30_4_041406 crossref_primary_10_1109_TGRS_2020_3011943 crossref_primary_10_1155_2021_2472726 crossref_primary_10_1155_2017_3792805 |
Cites_doi | 10.1109/TGRS.2004.827257 10.1109/TGRS.2009.2016214 10.1113/jphysiol.1968.sp008455 10.1109/tpami.2012.231 10.1109/36.752239 10.1016/j.isprsjprs.2010.11.001 10.1109/TGRS.2012.2205263 10.1162/neco.2008.12-07-661 10.1016/0893-6080(88)90014-7 10.1080/014311697218700 10.1109/tgrs.2011.2165957 10.1126/science.1127647 10.1109/79.974718 10.1109/jstars.2014.2329330 10.1109/TGRS.2004.831865 10.1109/5.726791 10.1109/TGRS.2009.2037898 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Wei Hu et al. Copyright © 2015 Wei Hu et al. Wei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Copyright_xml | – notice: Copyright © 2015 Wei Hu et al. – notice: Copyright © 2015 Wei Hu et al. Wei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 3V. 7SP 7U5 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH D1I DWQXO GNUQQ HCIFZ JQ2 K7- KB. L6V L7M M0N M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7QO FR3 P64 7SC L~C L~D |
DOI | 10.1155/2015/258619 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Biotechnology Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Engineering Research Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts – Academic Computer and Information Systems Abstracts Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Engineering Research Database Publicly Available Content Database Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-7268 |
Editor | Wu, Tianfu |
Editor_xml | – sequence: 1 givenname: Tianfu surname: Wu fullname: Wu, Tianfu |
EndPage | 12 |
ExternalDocumentID | 3772682211 10_1155_2015_258619 1070085 |
GroupedDBID | .4S .DC 188 24P 29L 2UF 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY AAKPC ABJCF ABUWG ACGFO ACIWK ADBBV ADJCN AEGXH AENEX AFKRA AHFXO AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C1A CAHYU CCPQU CNMHZ CS3 CWDGH D1I DWQXO E3Z EBS EDO EJD GNUQQ GROUPED_DOAJ H13 HCIFZ IAO IEA IGS IL9 IPNFZ ITC K6V K7- KB. KQ8 L6V M0N M7S M~E OK1 P62 PDBOC PIMPY PQQKQ PROAC PTHSS Q2X RHU RHX RIG RNS TR2 TUS UGNYK UNMZH RHW 0R~ AAYXX ACCMX ADMLS CITATION OVT PHGZM PHGZT 7SP 7U5 7XB 8AL 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M PKEHL PQEST PQGLB PQUKI PRINS Q9U 7QO FR3 P64 7SC L~C L~D |
ID | FETCH-LOGICAL-a628t-109877b6cd0333730e2d758c3b16d15acf565aad7d6c579ace8a7380c7a3ef623 |
IEDL.DBID | BENPR |
ISSN | 1687-725X |
IngestDate | Thu Jul 10 18:02:13 EDT 2025 Thu Jul 10 23:26:32 EDT 2025 Fri Jul 25 12:17:20 EDT 2025 Tue Jul 01 03:54:46 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Sun Jun 02 19:19:08 EDT 2024 Tue Nov 26 17:06:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2015 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a628t-109877b6cd0333730e2d758c3b16d15acf565aad7d6c579ace8a7380c7a3ef623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9999-783X 0000-0002-2058-2373 |
OpenAccessLink | https://www.proquest.com/docview/1702625919?pq-origsite=%requestingapplication% |
PQID | 1702625919 |
PQPubID | 237780 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1730104707 proquest_miscellaneous_1709189535 proquest_journals_1702625919 crossref_citationtrail_10_1155_2015_258619 crossref_primary_10_1155_2015_258619 hindawi_primary_10_1155_2015_258619 emarefa_primary_1070085 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
PublicationTitle | Journal of sensors |
PublicationYear | 2015 |
Publisher | Hindawi Publishing Corporation John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi Publishing Corporation – name: John Wiley & Sons, Inc |
References | (4) 2012; 50 (10) 1999; 37 Girshick R. Donahue J. Darrell T. Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 IEEE 580 587 Abdel-Hamid O. Mohamed A.-R. Jiang H. Penn G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12) March 2012 IEEE 4277 4280 10.1109/icassp.2012.6288864 2-s2.0-84867605836 Sermanet P. LeCun Y. Traffic sign recognition with multi-scale convolutional networks Proceedings of the International Joint Conference on Neural Network (IJCNN '11) August 2011 IEEE 2809 2813 10.1109/ijcnn.2011.6033589 2-s2.0-80054736963 Taigman Y. Yang M. Ranzato M. Wolf L. DeepFace: closing the gap to human-level performance in face verification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 Columbus, Ohio, USA 1701 1708 10.1109/cvpr.2014.220 (28) 1968; 195 (1) 2002; 19 (7) 2011; 66 (27) 2008; 20 Sainath T. N. Mohamed A.-R. Kingsbury B. Ramabhadran B. Deep convolutional neural networks for LVCSR Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '13) May 2013 Vancouver, Canada IEEE 8614 8618 10.1109/icassp.2013.6639347 2-s2.0-84890525984 Bergstra J. Bastien F. Breuleux O. Lamblin P. Pascanu R. Delalleau O. Desjardins G. Warde-Farley D. Goodfellow I. Bergeron A. Bengio Y. Theano: deep learning on GPUs with python Proceedings of the NIPS 2011, Big Learning Workshop December 2011 Granada, Spain 712 721 (11) 2010; 48 (9) 1997; 18 Sermanet P. Chintala S. LeCun Y. Convolutional neural networks applied to house numbers digit classification Proceedings of the 21st International Conference on Pattern Recognition (ICPR '12) November 2012 IEEE 3288 3291 2-s2.0-84874575248 Chopra S. Hadsell R. LeCun Y. Learning a similarity metric discriminatively, with application to face verification 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05) June 2005 IEEE 539 546 10.1109/cvpr.2005.202 2-s2.0-24644436425 (5) 2004; 42 Cireşan D. C. Meier U. Masci J. Gambardella L. M. Schmidhuber J. Flexible, high performance convolutional neural networks for image classification 22 Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI '11) July 2011 1237 1242 10.5591/978-1-57735-516-8/ijcai11-210 2-s2.0-84881039921 Simard P. Y. Steinkraus D. Platt J. C. Best practices for convolutional neural networks applied to visual document analysis 2 Proceedings of the 7th International Conference on Document Analysis and Recognition August 2003 Edinburgh, UK IEEE Computer Society 958 963 10.1109/ICDAR.2003.1227801 (3) 2009; 47 (26) 2014; 7 Jia Y. Shelhamer E. Donahue J. Karayev S. Long J. Girshick R. Guadarrama S. Caffe: convolutional architecture for fast feature embedding Proceedings of the ACM International Conference on Multimedia November 2014 Orlando, Fla, USA ACM 675 678 10.1145/2647868.2654889 (2) 2004; 42 Ciregan D. Meier U. Schmidhuber J. Multi-column deep neural networks for image classification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12) June 2012 IEEE 3642 3649 2-s2.0-84866714584 10.1109/cvpr.2012.6248110 (13) 1988; 1 (21) 2013; 35 LeCun Y. Cortes C. Burges C. J. The MNIST database of handwritten digits 1998, http://yann.lecun.com/exdb/mnist Krizhevsky A. Sutskever I. Hinton G. E. Imagenet classification with deep convolutional neural networks Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12) 2012 1097 1105 (8) 2013; 51 LeCun Y. A. Bottou L. Orr G. B. Müller K.-R. Efficient backprop Neural Networks: Tricks of the Trade 2012 Berlin, Germany Springer 9 48 (34) 2014; 15 Gualtieri J. A. Chettri S. Support vector machines for classification of hyperspectral data 2 Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '00) July 2000 IEEE 813 815 2-s2.0-0034546934 (14) 1998; 86 (12) 2006; 313 11 12 14 26 27 (29) 2012 28 1 2 3 4 5 7 8 9 10 21 |
References_xml | – reference: Abdel-Hamid O. Mohamed A.-R. Jiang H. Penn G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12) March 2012 IEEE 4277 4280 10.1109/icassp.2012.6288864 2-s2.0-84867605836 – reference: Bergstra J. Bastien F. Breuleux O. Lamblin P. Pascanu R. Delalleau O. Desjardins G. Warde-Farley D. Goodfellow I. Bergeron A. Bengio Y. Theano: deep learning on GPUs with python Proceedings of the NIPS 2011, Big Learning Workshop December 2011 Granada, Spain 712 721 – volume: 48 start-page: 2271 issue: 5 year: 2010 end-page: 2282 ident: 11 article-title: Semisupervised neural networks for efficient hyperspectral image classification – reference: LeCun Y. Cortes C. Burges C. J. The MNIST database of handwritten digits 1998, http://yann.lecun.com/exdb/mnist/ – reference: Gualtieri J. A. Chettri S. Support vector machines for classification of hyperspectral data 2 Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '00) July 2000 IEEE 813 815 2-s2.0-0034546934 – volume: 20 start-page: 2629 issue: 11 year: 2008 end-page: 2636 ident: 27 article-title: Deep, narrow sigmoid belief networks are universal approximators – volume: 35 start-page: 1915 issue: 8 year: 2013 end-page: 1929 ident: 21 article-title: Learning hierarchical features for scene labeling – volume: 7 start-page: 2094 issue: 6 year: 2014 end-page: 2107 ident: 26 article-title: Deep learning-based classification of hyperspectral data – reference: Sermanet P. LeCun Y. Traffic sign recognition with multi-scale convolutional networks Proceedings of the International Joint Conference on Neural Network (IJCNN '11) August 2011 IEEE 2809 2813 10.1109/ijcnn.2011.6033589 2-s2.0-80054736963 – reference: Simard P. Y. Steinkraus D. Platt J. C. Best practices for convolutional neural networks applied to visual document analysis 2 Proceedings of the 7th International Conference on Document Analysis and Recognition August 2003 Edinburgh, UK IEEE Computer Society 958 963 10.1109/ICDAR.2003.1227801 – volume: 47 start-page: 2973 issue: 8 year: 2009 end-page: 2987 ident: 3 article-title: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques – reference: Taigman Y. Yang M. Ranzato M. Wolf L. DeepFace: closing the gap to human-level performance in face verification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 Columbus, Ohio, USA 1701 1708 10.1109/cvpr.2014.220 – reference: Sermanet P. Chintala S. LeCun Y. Convolutional neural networks applied to house numbers digit classification Proceedings of the 21st International Conference on Pattern Recognition (ICPR '12) November 2012 IEEE 3288 3291 2-s2.0-84874575248 – volume: 51 start-page: 844 issue: 2 year: 2013 end-page: 856 ident: 8 article-title: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning – reference: Girshick R. Donahue J. Darrell T. Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '14) June 2014 IEEE 580 587 – volume: 19 start-page: 17 issue: 1 year: 2002 end-page: 28 ident: 1 article-title: Hyperspectral image data analysis – volume: 18 start-page: 699 issue: 4 year: 1997 end-page: 709 ident: 9 article-title: Introduction neural networks in remote sensing – reference: Cireşan D. C. Meier U. Masci J. Gambardella L. M. Schmidhuber J. Flexible, high performance convolutional neural networks for image classification 22 Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI '11) July 2011 1237 1242 10.5591/978-1-57735-516-8/ijcai11-210 2-s2.0-84881039921 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2323 ident: 14 article-title: Gradient-based learning applied to document recognition – volume: 195 start-page: 215 issue: 1 year: 1968 end-page: 243 ident: 28 article-title: Receptive fields and functional architecture of monkey striate cortex – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: 34 article-title: Dropout: a simple way to prevent neural networks from overfitting – volume: 42 start-page: 1335 issue: 6 year: 2004 end-page: 1343 ident: 2 article-title: A relative evaluation of multiclass image classification by support vector machines – reference: Jia Y. Shelhamer E. Donahue J. Karayev S. Long J. Girshick R. Guadarrama S. Caffe: convolutional architecture for fast feature embedding Proceedings of the ACM International Conference on Multimedia November 2014 Orlando, Fla, USA ACM 675 678 10.1145/2647868.2654889 – reference: Sainath T. N. Mohamed A.-R. Kingsbury B. Ramabhadran B. Deep convolutional neural networks for LVCSR Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '13) May 2013 Vancouver, Canada IEEE 8614 8618 10.1109/icassp.2013.6639347 2-s2.0-84890525984 – reference: Chopra S. Hadsell R. LeCun Y. Learning a similarity metric discriminatively, with application to face verification 1 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05) June 2005 IEEE 539 546 10.1109/cvpr.2005.202 2-s2.0-24644436425 – reference: Ciregan D. Meier U. Schmidhuber J. Multi-column deep neural networks for image classification Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12) June 2012 IEEE 3642 3649 2-s2.0-84866714584 10.1109/cvpr.2012.6248110 – volume: 50 start-page: 1185 issue: 4 year: 2012 end-page: 1198 ident: 4 article-title: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: 12 article-title: Reducing the dimensionality of data with neural networks – volume: 42 start-page: 1778 issue: 8 year: 2004 end-page: 1790 ident: 5 article-title: Classification of hyperspectral remote sensing images with support vector machines – volume: 1 start-page: 119 issue: 2 year: 1988 end-page: 130 ident: 13 article-title: Neocognitron: a hierarchical neural network capable of visual pattern recognition – volume: 66 start-page: 247 issue: 3 year: 2011 end-page: 259 ident: 7 article-title: Support vector machines in remote sensing: a review – reference: LeCun Y. A. Bottou L. Orr G. B. Müller K.-R. Efficient backprop Neural Networks: Tricks of the Trade 2012 Berlin, Germany Springer 9 48 – volume: 37 start-page: 1179 issue: 2 year: 1999 end-page: 1184 ident: 10 article-title: A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images – reference: Krizhevsky A. Sutskever I. Hinton G. E. Imagenet classification with deep convolutional neural networks Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS '12) 2012 1097 1105 – ident: 2 doi: 10.1109/TGRS.2004.827257 – ident: 3 doi: 10.1109/TGRS.2009.2016214 – ident: 28 doi: 10.1113/jphysiol.1968.sp008455 – start-page: 9 volume-title: Efficient backprop year: 2012 ident: 29 – ident: 21 doi: 10.1109/tpami.2012.231 – ident: 10 doi: 10.1109/36.752239 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 34 publication-title: The Journal of Machine Learning Research – ident: 7 doi: 10.1016/j.isprsjprs.2010.11.001 – ident: 8 doi: 10.1109/TGRS.2012.2205263 – ident: 27 doi: 10.1162/neco.2008.12-07-661 – volume: 1 start-page: 119 issue: 2 year: 1988 ident: 13 publication-title: Neural Networks doi: 10.1016/0893-6080(88)90014-7 – ident: 9 doi: 10.1080/014311697218700 – ident: 4 doi: 10.1109/tgrs.2011.2165957 – ident: 12 doi: 10.1126/science.1127647 – ident: 1 doi: 10.1109/79.974718 – ident: 26 doi: 10.1109/jstars.2014.2329330 – ident: 5 doi: 10.1109/TGRS.2004.831865 – ident: 14 doi: 10.1109/5.726791 – ident: 11 doi: 10.1109/TGRS.2009.2037898 |
SSID | ssj0063733 |
Score | 2.576684 |
Snippet | Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional... |
SourceID | proquest crossref hindawi emarefa |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classification Image classification Neural networks Spectra Spectral signatures Support vector machines Two dimensional |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46GOiDeHc6peKehEK63JpHmY5O0CcHfStpmqLguuE2_fuepNmYToYvvZBTaM_1O01yDkIdMB-NhWQhxA4V0i4twlhyGmJDSklz21TEbnB-eubJkD6mLPULZKfrU_hACul5BAcWc1vdcxv0y-bkSbrwt5wI1zA-4mAuostSvwvv16M_4k7TjBRcQDBqvtrU9-ttzRW7-NLfR3seGAZ3tSQP0JapDtHuSrnAIzS4N2YS9MbVp9cXoLfFNdzJreaeBoBBgwRyy3oLpR0ajMBlBK75pV0W5CRxjIb9h5deEvpWCKHi3XgGzlLGQuRcF5gQ-GBsugUgfU3yiBcRU7oEYKZUIQqumZBKm1gJEmMtFDElQJwT1KjGlTlDQSlVAcDAaFVqijVoEgEpYkpt8M6FbqHbBaMy7euE23YV75nLFxjLLFezmqst1FkST-ryGH-TnXqOr1AJC_da6MZLYPPz7YV0Mm9j0ywSkD9C9maHr5fDYB12ykNVZjx3NDKKJSNsEw1xRYqwOP_Xy1ygHXtX_4dpo8bsY24uAZnM8iunmN_sCtl0 priority: 102 providerName: Hindawi Publishing |
Title | Deep Convolutional Neural Networks for Hyperspectral Image Classification |
URI | https://search.emarefa.net/detail/BIM-1070085 https://dx.doi.org/10.1155/2015/258619 https://www.proquest.com/docview/1702625919 https://www.proquest.com/docview/1709189535 https://www.proquest.com/docview/1730104707 |
Volume | 2015 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3ZSsNAcPBA0Afxtl5E9EkIJt3s9SRarVFQRBT7FjabDQo2rbbq7zu72WpB6Us2ZCdkM_fsMQNwiOKjIy5piLZDhUkzKUIhWRJGhpQyyW1REXvA-eaWpY_JdYd2_ITbwG-rHOlEp6iLnrZz5Mcxx2gBffVYnvTfQls1yq6u-hIa0zCLKlhg8DV7dnF7dz_SxYxwV0w-ZihKvEk7_oQejgCj_hgvVDCbZGfMJs2ZrsIbNFRzzzYs_nr5o6ad7WkvwaJ3GoPTmsrLMGWqFVgYSyW4ClfnxvSDVq_69LyE8DbxhmvcTu9BgP5pkGLcWR-vtF1XXVQngSuMabcMOSqtwWP74qGVhr5MQqhYUwxRkUrBec50ERGCPxyZZoFRgCZ5zIqYKl2i06ZUwQumKZdKG6E4EZHmipgS3Z91mKl6ldmEoJSqQKfBaFXqJNLIZQQpHCWJNew51w04GiEq0z6HuC1l8Zq5WILSzGI1q7HagMMf4H6dOuN_sA2P8TEobl3BBhx4Ckx-f2dEnczL3yD75ZYG7P90o-TY5RBVmd6Hg5GxkJTQSTDEJTCK-Nbkz2zDvB1TPTmzAzPD9w-zi-7KMN-DadG-3POciW3r6fwyxaf3aecbyqTpBQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hECo9oL6AUNq6Kr0gWdjel_dQVRVpmjQJJ5ByM-v1Wq0ETkoCiD_V39iZtU0jtcqNi23Jk4dnv5n5Zr07A3CI5mMjpUWIscOEPOFFmGrJw8ixUvOcmorQBufxqeyf8-8TMVmD3-1eGFpW2fpE76iLqaU58uNYYbaAXD3Wn2e_QuoaRW9X2xYaNSyG7v4OU7b5p0EXx_djkvS-np30w6arQGhkki7Q72CarXJpi4gxhgB3SYGk2bI8lkUsjC2R4xhTqEJaobSxLjWKpZFVhrlSUqEDdPkbnDFNFpX2vrWeX-K3-QX9Eg1XJWLS7AfE5z3GOIsHkUoq6bMUATfdlcELDIubPygJv_v5T1Dwka73DLYbihp8qTH1HNZc9QKeLhUufAmDrnOz4GRa3TbIRXkq8-FPfl35PEA2HPQxy603c9KtwRU6r8C34aQFSh4Tr-D8UdS3A-vVtHJ7EJTaFEhRnDWl5ZFFTDPEU8Q50Yhc2Q4ctYrKbFOxnBpnXGY-cxEiI61mtVY7cPggPKsLdfxfbLfR-JKUIuLZgQ_NCKz-_EE7Ollj7fPsLzY78P7hNtopvXwxlZveeBkdp1owsUqG-XJJkdpf_TPv4En_bDzKRoPT4WvYov9XTwsdwPri-sa9QaK0yN96dAZw8djm8Acf6yDb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VqYrgwPsRKGBEuSC5sb0v-4AQSggJhYoDFbm56_VaVKVOIAkV_DT-Cn-GmfW6RIBy64GLbcnj9zcz36xnZwB2UH1MpDIRou_QIU94GaaZ5GFkWZXxgpqK0ATnt_tydMBfT8RkA360c2EorbK1ic5Ql1NDY-S9WGG0gFw9znqVT4t4Nxg-n30OqYMU_Wlt22k0ENmz304xfJs_Gw_wWz9JkuHL9_1R6DsMhFom6QJtEIbcqpCmjBhjCHablEigDStiWcZCmwr5jtalKqURKtPGplqxNDJKM1tJKnqA5n-TujrxDmz2PwxejVo_IPF8Lr1fohqrREz87EB8-h56XVyIVFKBnxV_uGVPNG6gk9z6SCH56dFfLsL5veEV-Nm-sSbd5Xh3uSh2zfc_ikn-n6_0Klz2dDx40ejPNdiw9XW4tFKk8QaMB9bOgv60_uq1FOWppIlbuRz6eYDMPxhhRN9MXKVd4xM01IFrOUrJWA7_N-HgXJ7lFnTqaW3vQFBlukQ6Zo2uDI8M6i9D3Yk4J8pUKNOFpy0McuOrs1OTkE-5i9KEyAkzeYOZLuycCc-aoiT_Frvt8bQipYhkd-Gxx9f647db3OTess3z36DpwqOz3WiT6EeTru106WSyOM0EE-tkmCsNFam76y_zEC4gKvM34_29e3CRbq8ZAduGzuLL0t5HTrgoHnjlC-DwvMH5CzVJbco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Convolutional+Neural+Networks+for+Hyperspectral+Image+Classification&rft.jtitle=Journal+of+sensors&rft.au=Hu%2C+Wei&rft.au=Huang%2C+Yangyu&rft.au=Wei%2C+Li&rft.au=Zhang%2C+Fan&rft.date=2015-01-01&rft.issn=1687-725X&rft.eissn=1687-7268&rft.volume=2015&rft_id=info:doi/10.1155%2F2015%2F258619&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-725X&client=summon |