Fracture and compaction of andesite in a volcanic edifice
The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the effic...
Saved in:
Published in | Bulletin of volcanology Vol. 77; no. 6; pp. 55 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2015
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. |
---|---|
AbstractList | The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcan de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. The failure mode of lava--dilatant or compactant--depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25%) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (< 1 km), both low and high porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (> 1 km), while low porosity (< 10%) lava remains dilatant, the failure of high porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactive deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading, and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e., equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5% reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes. |
ArticleNumber | 55 |
Author | Lavallée, Y. Farquharson, J. I. Baud, P. Heap, M. J. Reuschlé, T. |
Author_xml | – sequence: 1 givenname: M. J. surname: Heap fullname: Heap, M. J. email: heap@unistra.fr organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST) – sequence: 2 givenname: J. I. surname: Farquharson fullname: Farquharson, J. I. organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST) – sequence: 3 givenname: P. surname: Baud fullname: Baud, P. organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST) – sequence: 4 givenname: Y. surname: Lavallée fullname: Lavallée, Y. organization: Earth, Ocean and Ecological Sciences, University of Liverpool – sequence: 5 givenname: T. surname: Reuschlé fullname: Reuschlé, T. organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26321781$$D View this record in MEDLINE/PubMed https://hal.science/hal-01180530$$DView record in HAL |
BookMark | eNqNks9rFTEQx4NU7Gv1D_AiC170sDqT3c2Pi1CKtcIDL3oO2WzSpuxLnsnug_73ZtlW6gPFQwiZ-Xy_mUnmjJyEGCwhrxE-IAD_mAHatqsBy5KNqPkzssG2oTUIlCdkA7QTtZAAp-Qs5zuAkmT8BTmlrKHIBW6IvEraTHOylQ5DZeJuX44-hiq6JWKzn2zlQ6WrQxyNDt5UdvDOG_uSPHd6zPbVw35Oflx9_n55XW-_ffl6ebGtNaNsqp3WjXR8oKK1bDCOip5R0zrBhZHOdT1njWtRD93QWWoNIHeU9sL03ADj0JyTT6vvfu53djA2TEmPap_8Tqd7FbVXf2aCv1U38aDarkPsaDF4vxrcHsmuL7ZqiQGigK6BAxb23cNlKf6cbZ7Uzmdjx1EHG-esUFDGaCPkf6C8mKKkUhT07RF6F-cUyqspZIK3kjPKC_XmaaO_S338rALwFTAp5pysU8ZPevmt0rcfFYJaxkKtY1HaKquMhVqs8Uj5aP4vDV01ubDhxqYnRf9V9AuyKMeH |
CitedBy_id | crossref_primary_10_1007_s00603_018_1488_z crossref_primary_10_1016_j_jvolgeores_2020_106964 crossref_primary_10_1007_s00126_024_01308_w crossref_primary_10_1007_s00445_020_1370_1 crossref_primary_10_1016_j_jvolgeores_2016_04_024 crossref_primary_10_1016_j_jvolgeores_2016_10_015 crossref_primary_10_1007_s00445_018_1210_8 crossref_primary_10_1016_j_jvolgeores_2016_02_011 crossref_primary_10_1063_5_0212998 crossref_primary_10_1016_j_epsl_2017_01_021 crossref_primary_10_1029_2018JB016983 crossref_primary_10_1016_j_jvolgeores_2019_106703 crossref_primary_10_1016_j_jsg_2017_02_006 crossref_primary_10_1016_j_jvolgeores_2015_03_016 crossref_primary_10_5194_se_13_875_2022 crossref_primary_10_1016_j_jvolgeores_2018_10_021 crossref_primary_10_1093_gji_ggad377 crossref_primary_10_1007_s00445_023_01657_w crossref_primary_10_1016_j_epsl_2016_05_004 crossref_primary_10_1016_j_jvolgeores_2016_03_013 crossref_primary_10_1016_j_jvolgeores_2017_11_015 crossref_primary_10_1080_00288306_2021_1885048 crossref_primary_10_3389_feart_2018_00253 crossref_primary_10_1016_j_jvolgeores_2019_01_020 crossref_primary_10_1002_2017GL074042 crossref_primary_10_1016_j_enggeo_2022_106554 crossref_primary_10_3389_feart_2021_680051 crossref_primary_10_1098_rsos_240792 crossref_primary_10_3390_rs14153526 crossref_primary_10_1038_s41598_017_08108_5 crossref_primary_10_1029_2019JB018099 crossref_primary_10_3389_feart_2019_00007 crossref_primary_10_1016_j_epsl_2020_116571 crossref_primary_10_1093_gji_ggaa437 crossref_primary_10_5194_se_8_561_2017 crossref_primary_10_2138_rmg_2022_87_15 crossref_primary_10_2138_am_2018_6714 crossref_primary_10_1016_j_jvolgeores_2018_07_004 crossref_primary_10_1029_2018JB016130 crossref_primary_10_1029_2022JB024600 crossref_primary_10_1144_SP519_2020_131 crossref_primary_10_1016_j_jmps_2022_105160 crossref_primary_10_1155_2020_3878503 crossref_primary_10_1007_s00445_016_1082_8 crossref_primary_10_1016_j_jvolgeores_2018_03_003 crossref_primary_10_1029_2018JB016719 crossref_primary_10_1016_j_pepi_2017_05_007 crossref_primary_10_1016_j_jvolgeores_2018_04_008 crossref_primary_10_1016_j_jvolgeores_2020_107038 crossref_primary_10_1007_s00445_019_1275_z crossref_primary_10_1007_s00445_020_01433_0 crossref_primary_10_1007_s00445_024_01742_8 crossref_primary_10_1016_j_mineng_2020_106663 crossref_primary_10_1029_2019GC008409 crossref_primary_10_1016_j_petrol_2022_110375 crossref_primary_10_1029_2019JB017399 crossref_primary_10_1016_j_jvolgeores_2016_05_007 crossref_primary_10_1016_j_jvolgeores_2017_07_019 crossref_primary_10_1029_2018JB017253 crossref_primary_10_1007_s00445_019_1306_9 crossref_primary_10_1016_j_jvolgeores_2022_107551 crossref_primary_10_1029_2021JB022514 crossref_primary_10_1007_s10346_017_0901_0 crossref_primary_10_1016_j_jvolgeores_2019_106684 crossref_primary_10_1016_j_enggeo_2022_106696 crossref_primary_10_1016_j_icarus_2020_113873 crossref_primary_10_1093_petrology_egz016 crossref_primary_10_1038_s41598_018_36505_x crossref_primary_10_1016_j_jvolgeores_2021_107348 crossref_primary_10_1038_s41598_017_05460_4 crossref_primary_10_1029_2020JB021321 crossref_primary_10_1007_s00445_021_01447_2 crossref_primary_10_1038_s41598_022_06765_9 crossref_primary_10_1155_2020_9057193 crossref_primary_10_1016_j_jvolgeores_2018_02_002 crossref_primary_10_3390_geosciences10040138 crossref_primary_10_5194_essd_12_2485_2020 crossref_primary_10_1007_s00445_015_0997_9 crossref_primary_10_1007_s00603_019_01785_w crossref_primary_10_1002_2016GL071540 crossref_primary_10_1038_s41598_022_26721_x crossref_primary_10_1002_2017JB015250 |
Cites_doi | 10.1016/j.ijrmms.2005.05.002 10.1130/G35855.1 10.1016/j.jvolgeores.2012.06.027 10.1016/j.jsg.2014.02.008 10.1007/s004450000103 10.1029/2000JB900133 10.1016/j.tecto.2010.09.027 10.1029/JB073i004p01417 10.1038/370641a0 10.1007/BF00186851 10.1016/j.jvolgeores.2015.03.016 10.1144/GSL.SP.1996.145.01.05 10.1130/0091-7613(1992)020<0299:GDAFTC>2.3.CO;2 10.1038/387387a0 10.1029/2005JB004101 10.1017/CBO9780511975684 10.1130/G20388.2 10.1016/j.jsg.2014.07.008 10.5194/sed-7-1077-2015 10.1002/2013JB010884 10.1007/s00445-015-0925-z 10.1016/j.jsg.2012.07.010 10.1016/S0040-1951(96)00098-4 10.1007/s00445-011-0518-4 10.1016/j.epsl.2014.08.012 10.1144/GSL.SP.1996.110.01.07 10.1111/j.1365-246X.2008.04086.x 10.1130/G24605A.1 10.1016/j.epsl.2011.04.044 10.1029/2002JB001854 10.1016/S0191-8141(02)00014-7 10.5194/se-4-201-2013 10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2 10.1146/annurev.earth.28.1.539 10.1007/BF00874337 10.1038/350039a0 10.1016/0040-1951(94)00236-3 10.1029/2012GL053218 10.1016/j.jvolgeores.2014.03.013 10.1016/S0377-0273(99)00047-5 10.1016/j.jvolgeores.2013.01.011 10.1016/j.jvolgeores.2011.04.006 10.1016/S0377-0273(02)00243-3 10.1029/JZ071i016p03939 10.1016/S0377-0273(02)00236-6 10.1126/science.1103445 10.1007/s00445-002-0218-1 10.1007/s004450100129 10.1016/j.jvolgeores.2014.07.013 10.1016/S0377-0273(02)00239-1 10.1144/GSL.SP.1996.110.01.01 10.1144/GSL.MEM.2002.021.01.07 10.1029/2010JB008046 10.1029/JB093iB05p04335 10.1029/94JB00578 10.5194/se-5-25-2014 10.1130/G33948.1 10.1016/0040-1951(94)00235-2 10.1130/0091-7613(1998)026<0079:EOTIPD>2.3.CO;2 10.1029/GM056p0001 10.1016/0040-1951(86)90153-8 10.1029/2006JB004501 10.1016/j.epsl.2012.05.014 10.1680/geot.1983.33.3.243 10.1016/0377-0273(84)90013-1 10.1029/2012GL054245 10.1002/2013JB010521 10.1016/j.jvolgeores.2008.02.007 10.1038/323598a0 10.5194/se-3-191-2012 10.1007/s00445-013-0696-3 10.1016/j.jsg.2013.03.007 10.1130/2010.2464(12) 10.1016/j.jvolgeores.2011.02.009 10.1016/j.jsg.2003.09.002 10.1016/0148-9062(93)90041-B 10.1016/j.jvolgeores.2008.07.003 10.1029/2012GL053739 10.1016/j.jvolgeores.2004.09.005 10.1016/S1365-1609(03)00053-4 10.1007/s00445-014-0856-0 10.1016/j.jvolgeores.2015.02.012 10.1016/j.jvolgeores.2010.12.002 10.1016/j.earscirev.2006.06.006 10.1029/96JB03282 10.1016/0191-8141(95)00076-P 10.1016/S0167-6636(97)00011-2 10.1785/0120030259 10.1007/s00445-010-0390-7 10.2138/am.2009.3129 10.1016/j.jvolgeores.2008.03.041 10.1029/JB078i026p05922 10.1029/JB080i005p00752 10.1007/978-3-642-74379-5_9 10.1016/j.jvolgeores.2013.05.012 10.1016/S0377-0273(00)00289-4 10.1029/96JB03281 10.1002/2014JB011551 10.1016/S0377-0273(02)00216-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Springer-Verlag Berlin Heidelberg 2015 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2015 – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION NPM 3V. 7TG 7TN 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 7X8 1XC VOOES 5PM |
DOI | 10.1007/s00445-015-0938-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1432-0819 |
EndPage | 19 |
ExternalDocumentID | PMC4551152 oai_HAL_hal_01180530v1 3712634751 26321781 10_1007_s00445_015_0938_7 |
Genre | Journal Article Feature |
GeographicLocations | Mexico, Colima |
GeographicLocations_xml | – name: Mexico, Colima |
GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C .86 06D 0R~ 0VY 199 1N0 1SB 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMOR ABMQK ABNWP ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L8X LAS LK5 LLZTM M2P M4Y M7R MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P PCBAR PF0 PKN PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WK6 WK8 XJT XOL YLTOR Z45 Z5O Z7R Z7Y Z7Z Z86 Z8M Z8S Z8T ZMTXR ~02 ~A9 ~EX ~S- AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM 7TG 7TN 7XB 8FK F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-a626t-faa39f7d284e6dcf28b62c4f878c9ff5b763f41ad5d5e2ec017f22b8cb7c06703 |
IEDL.DBID | U2A |
ISSN | 0258-8900 |
IngestDate | Thu Aug 21 14:09:32 EDT 2025 Thu Jul 10 08:57:49 EDT 2025 Fri Jul 11 07:50:22 EDT 2025 Thu Jul 10 17:49:32 EDT 2025 Sun Jul 13 03:55:58 EDT 2025 Mon Jul 21 06:05:10 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 00:37:21 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Shear fracture Outgassing Pore collapse Brittle Stratovolcano Inelastic compaction Edifice stability Volcán de Colima Permeability |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a626t-faa39f7d284e6dcf28b62c4f878c9ff5b763f41ad5d5e2ec017f22b8cb7c06703 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4551152 Editorial responsibility: A. Gudmundsson |
ORCID | 0000-0003-4933-2607 0000-0002-0490-5072 0000-0002-4748-735X |
OpenAccessLink | https://link.springer.com/10.1007/s00445-015-0938-7 |
PMID | 26321781 |
PQID | 1687497627 |
PQPubID | 54164 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551152 hal_primary_oai_HAL_hal_01180530v1 proquest_miscellaneous_1826623891 proquest_miscellaneous_1780519298 proquest_journals_1687497627 pubmed_primary_26321781 crossref_citationtrail_10_1007_s00445_015_0938_7 crossref_primary_10_1007_s00445_015_0938_7 springer_journals_10_1007_s00445_015_0938_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Official Journal of the International Association of Volcanology and Chemistry of the Earth`s Interior (IAVCEI) |
PublicationTitle | Bulletin of volcanology |
PublicationTitleAbbrev | Bull Volcanol |
PublicationTitleAlternate | Bull Volcanol |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
References | Voight, Janda, Glicken, Douglass (CR100) 1983; 33 Bernard, Kueppers, Ortiz (CR8) 2015; 7 Borgia, Linneman (CR11) 1990; 2 Collombet (CR19) 2009; 177 Taran, Bernard, Gavilanes, Lunezheva, Cortés, Armienta (CR91) 2001; 108 Lavallée, Benson, Heap, Hess, Flaws, Schillinger, Meredith, Dingwell (CR55) 2013; 41 Baud, Klein, Wong (CR5) 2004; 26 Lamb, Varley, Mather, Pyle, Smith, Liu (CR53) 2014; 284 Baud, Townend, Meredith (CR7) 2012 Baud, Schubnel, Wong (CR4) 2000; 105 Heap, Xu, Chen (CR39) 2014; 76 Collinson, Neuberg (CR18) 2012; 243–244 Hoek, Bieniawski (CR42) 1965; 1 Jaupart (CR46) 1998; 145 Mueller, Scheu, Spieler, Richard, Dingwell (CR69) 2011; 203 Pinel, Hooper, De la Cruz-Reyna, Reyes-Davila, Doin, Bascou (CR77) 2011; 200 Cilona, Faulkner, Tondi, Agosta, Mancini, Rustichelli, Baud, Vinciguerra (CR17) 2014; 67 Ayling, Meredith, Murrell (CR3) 1995; 245 Luhr (CR61) 2002; 117 van Wyk de Vries, Borgia (CR94) 1996; 110 Varley, Arámbula-Mendoza, Reyes-Dávila, Stevenson, Harwood (CR97) 2010; 72 Cuss, Rutter, Holloway (CR21) 2003; 40 James, Varley (CR45) 2012; 39 Gerst, Savage (CR31) 2004; 306 Hutchinson, Varley, Pyle, Mather, Pyle (CR44) 2013 Heap, Baud, Meredith, Vinciguerra, Reuschlé (CR37) 2014; 5 Kolzenburg, Heap, Lavallée, Russell, Meredith, Dingwell (CR50) 2012; 3 Heap, Kennedy, Pernin, Jacquemard, Baud, Farquharson, Scheu, Lavallée, Gilg, Letham-Brake, Mayer, Jolly, Reuschlé, Dingwell (CR40) 2015; 295 Nara, Meredith, Yoneda, Kaneko (CR72) 2011; 503 Wong, Baud (CR104) 2012; 44 Fortin, Schubnel, Gueguen (CR29) 2005; 42 Stoopes, Sheridan (CR90) 1992; 20 CR41 Mueller, Scheu, Spieler, Dingwell (CR68) 2008; 36 Kueppers, Scheu, Spieler, Dingwell (CR51) 2005; 141 Kaneko (CR47) 2002; 116 Mueller, Varley, Kueppers, Lesage, Reyes Davila, Dingwell (CR70) 2013; 4 Faulkner, Rutter (CR28) 2001; 29 Gaunt, Sammonds, Meredith, Smith, Pallister (CR30) 2014 Farrell, Healy, Taylor (CR27) 2014; 63 Heap, Lavallée, Petrakova, Baud, Reuschlé, Varley, Dingwell (CR38) 2014; 119 Gudmundsson (CR34) 2011 Schipper, Castro, Tuffen, Wadsworth, Chappell, Pantoja, Simpson, Le Ru (CR84) 2015; 77 Varley, Taran, Oppenheimer, Pyle, Barclay (CR96) 2003 Kennedy, Russell, Nelles (CR49) 2009; 94 CR59 Wong, David, Zhu (CR105) 1997; 102 CR58 Adelinet, Fortin, Schubnel, Guéguen (CR1) 2013; 255 Rust, Cashman, Wallace (CR80) 2004; 32 Cortés, Garduño, Macías, Navarro-Ochoa, Komorowski, Saucedo, Gavilanes (CR20) 2010; 464 Lockner, Byerlee, Kuksenko, Ponomarev, Sidorin (CR60) 1991; 350 Biggs, Mothes, Ruiz, Amelung, Dixon, Baker, Hong (CR9) 2010; 37 Horwell, Williamson, Llewellin, Damby, Le Blond (CR43) 2013; 75 Zoback, Byerlee (CR112) 1975; 80 Farquharson, Heap, Varley, Baud, Reuschlé (CR26) 2015; 297 McGuire (CR62) 1996; 110 Gudmundsson (CR33) 2006; 79 Zhu, Montesi, Wong (CR109) 1997; 25 CR64 CR63 Zhu, Baud, Wong (CR110) 2010 Kendrick, Lavallée, Hess, Heap, Gaunt, Meredith, Dingwell (CR48) 2013; 260 Mitchell, Faulkner (CR66) 2012; 339–340 Mollema, Antonellini (CR67) 1996; 267 Murray, Wooller (CR71) 2002; 117 Savov, Luhr, Navarro-Ochoa (CR83) 2008; 174 Read, Ayling, Meredith, Murrell (CR78) 1995; 245 Violay, Gibert, Mainprice, Burg (CR98) 2015 CR111 Smith, Sammonds, Tuffen, Meredith (CR88) 2011; 307 Young, Gottsmann (CR107) 2015; 120 Shipton, Evans, Robeson, Forster, Snelgrove (CR87) 2002; 86 CR6 Zobin, González-Amezcua, Reyes-Dávila (CR113) 2002; 64 Arámbula-Mendoza, Lesage, Valdés-González, Varley, Reyes-Dávila, Navarro (CR2) 2011; 205 Mitchell, Faulkner (CR65) 2008; 113 Goto, Nakata, Kurokawa, Shimano, Sugimoto, Sakuma, Hoshizumi, Yoshimoto, Uto (CR32) 2008; 175 Paterson, Wong (CR76) 2005 Rutter (CR81) 1986; 122 CR82 Guest, Chester, Duncan (CR35) 1984; 21 Borgia (CR10) 1994; 99 Taran, Gavilanes, Cortés (CR92) 2002; 117 Ngwenya, Kwon, Elphick, Main (CR74) 2003; 108 Webb, Varley, Pyle, Mather (CR102) 2014; 278–279 Okumura, Sasaki (CR75) 2014; 42 Schock, Heard, Stephans (CR85) 1973; 78 Borgia, Delaney, Denlinger (CR12) 2000; 28 Lavallée, Heap, Kueppers, Kendrick, Dingwell, Varley, Komorowski (CR56) 2015 David, Wong, Zhu, Zhang (CR22) 1994; 143 Lesage, Reyes-Dávila, Arámbula-Mendoza (CR57) 2014; 119 CR16 Castro, Bindeman, Tuffen, Schipper (CR15) 2014; 405 Roman, Moran, Power, Cashman (CR79) 2004; 94 van Wyk de Vries, Francis (CR95) 1997; 387 CR99 Hall, Robin, Beate, Mothes, Monzier (CR36) 1999; 91 Lavallée, Varley, Alatorre-Ibargüengoitia, Hess, Kueppers, Mueller, Richard, Scheu, Spieler, Dingwell (CR54) 2012; 74 Nguyen, Gonnermann, Houghton (CR73) 2014 Tibaldi (CR93) 2001; 63 Scholz (CR86) 1968; 73 Brace, Paulding, Scholz (CR13) 1966; 71 Lagmay, van Wyk de Vries, Kerle, Pyle (CR52) 2000; 62 Woods, Koyaguchi (CR106) 1994; 370 CR25 Donnadieu, Merle (CR23) 1998; 26 Brantut, Heap, Meredith, Baud (CR14) 2013; 52 Eichelberger, Carrigan, Westrich, Price (CR24) 1986; 323 CR101 Wibberley, Shimamoto (CR103) 2003; 25 Stevenson, Varley (CR89) 2008; 177 Zhu, Wong (CR108) 1997; 102 938_CR82 K Kaneko (938_CR47) 2002; 116 A Gudmundsson (938_CR33) 2006; 79 CJ Horwell (938_CR43) 2013; 75 W Zhu (938_CR109) 1997; 25 VM Zobin (938_CR113) 2002; 64 SB Mueller (938_CR70) 2013; 4 MJ Heap (938_CR40) 2015; 295 A Gudmundsson (938_CR34) 2011 Y Lavallée (938_CR56) 2015 B Wyk de Vries van (938_CR95) 1997; 387 T-f Wong (938_CR105) 1997; 102 W Zhu (938_CR108) 1997; 102 B Bernard (938_CR8) 2015; 7 CT Nguyen (938_CR73) 2014 B Wyk de Vries van (938_CR94) 1996; 110 Y Lavallée (938_CR55) 2013; 41 ASD Collinson (938_CR18) 2012; 243–244 IP Savov (938_CR83) 2008; 174 B Voight (938_CR100) 1983; 33 ML Hall (938_CR36) 1999; 91 JE Kendrick (938_CR48) 2013; 260 Y Lavallée (938_CR54) 2012; 74 P Lesage (938_CR57) 2014; 119 A Cilona (938_CR17) 2014; 67 NR Varley (938_CR96) 2003 RN Schock (938_CR85) 1973; 78 W Zhu (938_CR110) 2010 DR Faulkner (938_CR28) 2001; 29 938_CR64 D Lockner (938_CR60) 1991; 350 J Castro (938_CR15) 2014; 405 938_CR63 938_CR111 A Cortés (938_CR20) 2010; 464 TM Mitchell (938_CR66) 2012; 339–340 W Hutchinson (938_CR44) 2013 Y Nara (938_CR72) 2011; 503 A Borgia (938_CR11) 1990; 2 V Pinel (938_CR77) 2011; 200 AW Woods (938_CR106) 1994; 370 A Tibaldi (938_CR93) 2001; 63 RJ Cuss (938_CR21) 2003; 40 P Baud (938_CR5) 2004; 26 U Kueppers (938_CR51) 2005; 141 PN Mollema (938_CR67) 1996; 267 Y Taran (938_CR92) 2002; 117 HE Gaunt (938_CR30) 2014 E Rutter (938_CR81) 1986; 122 938_CR101 J Fortin (938_CR29) 2005; 42 F Donnadieu (938_CR23) 1998; 26 J Biggs (938_CR9) 2010; 37 GR Stoopes (938_CR90) 1992; 20 MR Ayling (938_CR3) 1995; 245 938_CR58 E Hoek (938_CR42) 1965; 1 CI Schipper (938_CR84) 2015; 77 R Arámbula-Mendoza (938_CR2) 2011; 205 A Borgia (938_CR10) 1994; 99 938_CR59 TM Mitchell (938_CR65) 2008; 113 S Mueller (938_CR69) 2011; 203 N Brantut (938_CR14) 2013; 52 LA Kennedy (938_CR49) 2009; 94 938_CR41 Y Goto (938_CR32) 2008; 175 NJC Farrell (938_CR27) 2014; 63 YA Taran (938_CR91) 2001; 108 M Violay (938_CR98) 2015 M Collombet (938_CR19) 2009; 177 MR James (938_CR45) 2012; 39 JB Murray (938_CR71) 2002; 117 C David (938_CR22) 1994; 143 BT Ngwenya (938_CR74) 2003; 108 JE Guest (938_CR35) 1984; 21 P Baud (938_CR7) 2012 NK Young (938_CR107) 2015; 120 ZK Shipton (938_CR87) 2002; 86 WF Brace (938_CR13) 1966; 71 S Mueller (938_CR68) 2008; 36 AMF Lagmay (938_CR52) 2000; 62 M Adelinet (938_CR1) 2013; 255 S Okumura (938_CR75) 2014; 42 CH Scholz (938_CR86) 1968; 73 MJ Heap (938_CR37) 2014; 5 JC Eichelberger (938_CR24) 1986; 323 A Borgia (938_CR12) 2000; 28 AC Rust (938_CR80) 2004; 32 DC Roman (938_CR79) 2004; 94 R Smith (938_CR88) 2011; 307 MD Zoback (938_CR112) 1975; 80 938_CR6 JF Luhr (938_CR61) 2002; 117 MJ Heap (938_CR39) 2014; 76 C Jaupart (938_CR46) 1998; 145 MS Paterson (938_CR76) 2005 938_CR25 JA Stevenson (938_CR89) 2008; 177 WJ McGuire (938_CR62) 1996; 110 OD Lamb (938_CR53) 2014; 284 T-f Wong (938_CR104) 2012; 44 MJ Heap (938_CR38) 2014; 119 N Varley (938_CR97) 2010; 72 IJ Farquharson (938_CR26) 2015; 297 MD Read (938_CR78) 1995; 245 A Gerst (938_CR31) 2004; 306 P Baud (938_CR4) 2000; 105 CAJ Wibberley (938_CR103) 2003; 25 938_CR99 S Kolzenburg (938_CR50) 2012; 3 938_CR16 EB Webb (938_CR102) 2014; 278–279 15567860 - Science. 2004 Nov 26;306(5701):1543-7 |
References_xml | – volume: 29 start-page: 503 year: 2001 end-page: 506 ident: CR28 article-title: Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? publication-title: Geology – year: 2005 ident: CR76 publication-title: Experimental rock deformation—the brittle field – volume: 105 start-page: 19289 issue: B8 year: 2000 end-page: 19303 ident: CR4 article-title: Dilatancy, compaction, and failure mode in Solnhofen limestone publication-title: J Geophys Res – volume: 26 start-page: 79 year: 1998 end-page: 82 ident: CR23 article-title: Experiments on the identation process during cryptodome intrusions: new insights into Mount St. Helens deformation publication-title: Geology – volume: 307 start-page: 191 year: 2011 end-page: 200 ident: CR88 article-title: Evolution of the mechanics of the 2004–2008 Mt. St. Helens lava dome with time and temperature publication-title: Earth Planet Sci Lett – volume: 37 start-page: 21 year: 2010 ident: CR9 article-title: Stratovolcano growth by co-eruptive intrusion: the 2008 eruption of Tungurahua Ecuador publication-title: Geophys Res Lett – volume: 205 start-page: 30 year: 2011 end-page: 46 ident: CR2 article-title: Seismic activity that accompanied the effusive and explosive eruptions during the 2004–2005 period at Volcán de Colima, Mexico publication-title: J Volcanol Geotherm Res – ident: CR16 – volume: 119 start-page: 4360 year: 2014 end-page: 4376 ident: CR57 article-title: Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in Volcán de Colima, Mexico publication-title: J Geophys Res – volume: 41 start-page: 515 year: 2013 end-page: 518 ident: CR55 article-title: Reconstructing magma failure and the degassing network of dome-building eruptions publication-title: Geology – volume: 20 start-page: 299 year: 1992 end-page: 302 ident: CR90 article-title: Giant debris avalanches from the Colima Volcanic Complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment publication-title: Geology – volume: 113 start-page: B11 year: 2008 ident: CR65 article-title: Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones publication-title: J Geophys Res – volume: 94 start-page: 2366 year: 2004 end-page: 2379 ident: CR79 article-title: Temporal and spatial variation of local stress fields before and after the 1992 eruptions of crater peak vent, Mount Spurr Volcano, Alaska publication-title: Bull Seismol Soc Am – ident: CR25 – volume: 63 start-page: 112 year: 2001 end-page: 125 ident: CR93 article-title: Multiple sector collapses at stromboli volcano, Italy: how they work publication-title: Bull Volcanol – year: 2015 ident: CR56 article-title: The fragility of Volcán de Colima—a material constraint publication-title: Volcán de Colima: managing the threat – volume: 80 start-page: 752 year: 1975 end-page: 755 ident: CR112 article-title: The effect of microcrack dilatancy on the permeability of westerly granite publication-title: J Geophys Res – volume: 4 start-page: 201 year: 2013 end-page: 213 ident: CR70 article-title: Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico publication-title: Solid Earth – ident: CR101 – volume: 71 start-page: 3939 year: 1966 end-page: 3953 ident: CR13 article-title: Dilatancy in the fracture of crystalline rocks publication-title: J Geophys Res – volume: 73 start-page: 1417 year: 1968 end-page: 1432 ident: CR86 article-title: Microfracturing and the inelastic deformation of rock in compression publication-title: J Geophys Res – volume: 39 start-page: 22 year: 2012 ident: CR45 article-title: Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico publication-title: Geophys Res Lett – volume: 21 start-page: 1 year: 1984 end-page: 23 ident: CR35 article-title: The Valle del Bove, Mount Etna: its origin and relation to the stratigraphy and structure of the volcano publication-title: J Volcanol Geotherm Res – volume: 28 start-page: 539 year: 2000 end-page: 570 ident: CR12 article-title: Spreading volcanoes publication-title: Annu Rev Earth Planet Sci – volume: 63 start-page: 50 year: 2014 end-page: 67 ident: CR27 article-title: Anisotropy of permeability in faulted porous sandstones publication-title: J Struct Geol – volume: 245 start-page: 223 year: 1995 end-page: 235 ident: CR78 article-title: Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, II. Pore volumometry and acoustic emission measurements on water-saturated rocks publication-title: Tectonophysics – year: 2011 ident: CR34 publication-title: Rock fractures in geological processes – volume: 40 start-page: 847 year: 2003 end-page: 862 ident: CR21 article-title: The application of critical state soil mechanics to the mechanical behaviour of porous sandstones publication-title: Int J Rock Mech Min Sci – volume: 200 start-page: 49 year: 2011 end-page: 61 ident: CR77 article-title: The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: case study of Popocatepetl and Colima Volcano, Mexico publication-title: J Volcanol Geotherm Res – volume: 2 start-page: 208 year: 1990 end-page: 243 ident: CR11 article-title: On the mechanisms of lava flow emplacement and volcano growth: Arenal, Costa Rica publication-title: Lava Flows Domes, IAVCEI Proc Volcanol – volume: 108 start-page: B7 year: 2003 ident: CR74 article-title: Permeability evolution during progressive development of deformation bands in porous sandstones publication-title: J Geophys Res – volume: 72 start-page: 1093 year: 2010 end-page: 1107 ident: CR97 article-title: Long-period seismicity during magma movement at Volcán de Colima publication-title: Bull Volcanol – year: 2010 ident: CR110 article-title: Micromechanics of cataclastic pore collapse in limestone publication-title: J Geophys Res – year: 2013 ident: CR44 article-title: Airborne thermal remote sensing of the Volcán de Colima (Mexico) lava dome from 2007 to 2010 publication-title: Remote sensing of volcanoes & volcanic processes: integrating observation & modelling – volume: 32 start-page: 349 year: 2004 end-page: 352 ident: CR80 article-title: Magma degassing buffered by vapor flow through brecciated conduit margins publication-title: Geology – volume: 297 start-page: 52 year: 2015 end-page: 68 ident: CR26 article-title: Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study publication-title: J Volcanol Geotherm Res – ident: CR6 – volume: 117 start-page: 105 year: 2002 end-page: 119 ident: CR92 article-title: Chemical and isotopic composition of fumarolic gases and the SO2 flux from Volcán de Colima, Mexico, between the 1994 and 1998 eruptions publication-title: J Volcanol Geotherm Res – ident: CR63 – volume: 278–279 start-page: 132 year: 2014 end-page: 145 ident: CR102 article-title: Thermal imaging and analysis of short-lived Vulcanian explosions at Volcán de Colima, Mexico publication-title: J Volcanol Geotherm Res – volume: 350 start-page: 39 year: 1991 end-page: 42 ident: CR60 article-title: Quasi-static fault growth and shear fracture energy in granite publication-title: Nature – volume: 119 start-page: 2925 year: 2014 end-page: 2963 ident: CR38 article-title: Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico publication-title: J Geophys Res – volume: 94 start-page: 995 year: 2009 end-page: 1004 ident: CR49 article-title: Origins of mount St. Helens cataclasites: experimental insights publication-title: Am Mineral – volume: 295 start-page: 26 year: 2015 end-page: 42 ident: CR40 article-title: Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand publication-title: J Volcanol Geotherm Res – volume: 52 start-page: 17 year: 2013 end-page: 43 ident: CR14 article-title: Time-dependent cracking and brittle creep in crustal rocks: a review publication-title: J Struct Geol – volume: 141 start-page: 65 year: 2005 end-page: 75 ident: CR51 article-title: Field-based density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano, Japan publication-title: J Volcanol Geotherm Res – volume: 203 start-page: 168 year: 2011 end-page: 174 ident: CR69 article-title: The porosity of pyroclasts as an indicator of volcanic explosivity publication-title: J Volcanol Geotherm Res – volume: 143 start-page: 425 year: 1994 end-page: 456 ident: CR22 article-title: Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust publication-title: Pure Appl Geophys – volume: 175 start-page: 45 year: 2008 end-page: 59 ident: CR32 article-title: Character and origin of lithofacies in the conduit of Unzen volcano, Japan publication-title: Journal of Volcanology and Geothermal Research – ident: CR41 – volume: 284 start-page: 106 year: 2014 end-page: 121 ident: CR53 article-title: Multiple timescales of cyclical behaviour observed at two dome-forming eruptions publication-title: J Volcanol Geotherm Res – volume: 405 start-page: 52 year: 2014 end-page: 61 ident: CR15 article-title: Explosive origin of silicic lava: textural and δD–H O evidence for pyroclastic degassing during rhyolite effusion publication-title: Earth Planet Sci Lett – volume: 86 start-page: 863 year: 2002 end-page: 883 ident: CR87 article-title: Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modeling of faults publication-title: AAPG Bull – volume: 387 start-page: 387 year: 1997 end-page: 390 ident: CR95 article-title: Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading publication-title: Nature – volume: 145 start-page: 73 year: 1998 end-page: 90 ident: CR46 article-title: Gas loss from magmas through conduit walls during eruption publication-title: Geol Soc Lond, Spec Publ – year: 2015 ident: CR98 article-title: Brittle versus ductile deformation as the main control of the deep fluid circulation in oceanic crust publication-title: Geophys Res Lett – volume: 117 start-page: 69 year: 2002 end-page: 78 ident: CR71 article-title: Persistent summit subsidence at Volcan de Colima, Mexico, 1982–1999: strong evidence against Mogi deflation publication-title: J Volcanol Geotherm Res – volume: 503 start-page: 52 year: 2011 end-page: 59 ident: CR72 article-title: Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure publication-title: Tectonophysics – volume: 67 start-page: 75 year: 2014 end-page: 93 ident: CR17 article-title: The effects of rock heterogeneity on compaction localization in porous carbonates publication-title: J Struct Geol – volume: 370 start-page: 641 year: 1994 end-page: 644 ident: CR106 article-title: Transitions between explosive and effusive eruptions of silicic magmas publication-title: Nature – volume: 306 start-page: 1543 year: 2004 end-page: 1547 ident: CR31 article-title: Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool publication-title: Science – year: 2014 ident: CR73 article-title: Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska) publication-title: Geology – ident: CR111 – start-page: 263 year: 2003 end-page: 280 ident: CR96 article-title: Degassing processes of Popocatépetl and Volcán de Colima, Mexico publication-title: Volcanic degassing – ident: CR58 – volume: 102 start-page: 3009 issue: B2 year: 1997 end-page: 3025 ident: CR105 article-title: The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation publication-title: J Geophys Res – volume: 33 start-page: 243 year: 1983 end-page: 273 ident: CR100 article-title: Nature and mechanics of the Mount St. Helens rockslide avalanche of 18 May publication-title: Geotechnique – volume: 255 start-page: 12 year: 2013 end-page: 25 ident: CR1 article-title: Deformation modes in an Icelandic basalt: from brittle failure to localized deformation bands publication-title: J Volcanol Geotherm Res – volume: 42 start-page: 873 year: 2005 end-page: 889 ident: CR29 article-title: Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone publication-title: Int J Rock Mech Min Sci – volume: 62 start-page: 331 year: 2000 end-page: 346 ident: CR52 article-title: Volcano instability induced by strike-slip faulting publication-title: Bull Volcanol – volume: 243–244 start-page: 1 year: 2012 end-page: 13 ident: CR18 article-title: Gas storage, transport and pressure changes in an evolving permeable volcanic edifice publication-title: J Volcanol Geotherm Res – volume: 25 start-page: 199 year: 1997 end-page: 214 ident: CR109 article-title: Shear-enhanced compaction and permeability reduction: triaxial extension tests on porous sandstone publication-title: Mech Mater – year: 2012 ident: CR7 article-title: Permeability evolution during triaxial compaction of an anisotropic porous sandstone publication-title: J Geophys Res – volume: 5 start-page: 25 year: 2014 end-page: 44 ident: CR37 article-title: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling publication-title: Solid Earth – volume: 1 start-page: 137 year: 1965 end-page: 155 ident: CR42 article-title: Brittle fracture propagation in rock under compression publication-title: Int J Fract – volume: 36 start-page: 399 year: 2008 end-page: 402 ident: CR68 article-title: Permeability control on magma fragmentation publication-title: Geology – volume: 25 start-page: 59 year: 2003 end-page: 78 ident: CR103 article-title: Internal structure and permeability of major strike-slip fault zones: the median tectonic line in Mie Prefecture, southwest Japan publication-title: J Struct Geol – volume: 3 start-page: 191 year: 2012 end-page: 198 ident: CR50 article-title: Strength and permeability recovery of tuffisite-bearing andesite publication-title: Solid Earth – volume: 44 start-page: 25 year: 2012 end-page: 53 ident: CR104 article-title: The brittle-ductile transition in rocks: a review publication-title: J Struct Geol – volume: 122 start-page: 381 issue: 3-4 year: 1986 end-page: 387 ident: CR81 article-title: On the nomenclature of mode of failure transitions in rocks publication-title: Tectonophysics – volume: 7 start-page: 1077 year: 2015 end-page: 1095 ident: CR8 article-title: Revisiting the statistical analysis of pyroclast density and porosity data publication-title: Solid Earth Discuss – volume: 108 start-page: 245 year: 2001 end-page: 264 ident: CR91 article-title: Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas–atmosphere interaction publication-title: J Volcanol Geotherm Res – volume: 99 start-page: 17791 year: 1994 end-page: 17804 ident: CR10 article-title: Dynamic basis of volcanic spreading publication-title: J Geophys Res – volume: 177 start-page: 911 year: 2008 end-page: 924 ident: CR89 article-title: Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006-2007 publication-title: J Volcanol Geotherm Res – ident: CR64 – ident: CR99 – volume: 77 start-page: 34 year: 2015 ident: CR84 article-title: Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile) publication-title: Bull Volcanol – volume: 267 start-page: 209 year: 1996 end-page: 228 ident: CR67 article-title: Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone publication-title: Tectonophysics – volume: 260 start-page: 117 year: 2013 end-page: 126 ident: CR48 article-title: Tracking the permeable porous network during strain-dependent magmatic flow publication-title: J Volcanol Geotherm Res – year: 2014 ident: CR30 article-title: Pathways for degassing during the lava dome eruption of Mount St. Helens 2004–2008 publication-title: Geology – volume: 110 start-page: 95 year: 1996 end-page: 110 ident: CR94 article-title: The role of basement in volcano deformation publication-title: Geol Soc Lond Spec Publ – volume: 339–340 start-page: 24 year: 2012 end-page: 31 ident: CR66 article-title: Towards quantifying the matrix permeability of fault damage zones in low porosity rocks publication-title: Earth Planet Sci Lett – ident: CR82 – volume: 245 start-page: 205 year: 1995 end-page: 221 ident: CR3 article-title: Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, I. Elastic-wave propagation measurements on dry rocks publication-title: Tectonophysics – volume: 91 start-page: 1 year: 1999 end-page: 21 ident: CR36 article-title: Tungurahua Volcano, Ecuador: structure, eruptive history and hazards publication-title: J Volcanol Geotherm Res – volume: 117 start-page: 169 issue: 1-2 year: 2002 end-page: 194 ident: CR61 article-title: Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcán de Colima, México: implications for the end of the current eruptive cycle publication-title: J Volcanol Geotherm Res – volume: 76 start-page: 856 year: 2014 ident: CR39 article-title: The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magmas publication-title: Bull Volcanol – volume: 74 start-page: 249 year: 2012 end-page: 260 ident: CR54 article-title: Magmatic architecture of dome-building eruptions at Volcán de Colima, Mexico publication-title: Bull Volcanol – volume: 110 start-page: 1 year: 1996 end-page: 23 ident: CR62 article-title: Volcano instability: a review of contemporary themes publication-title: Geol Soc Lond – volume: 102 start-page: 3027 issue: B2 year: 1997 end-page: 3041 ident: CR108 article-title: The transition from brittle faulting to cataclastic flow: permeability evolution publication-title: J Geophys Res – volume: 120 start-page: 1559 year: 2015 end-page: 1571 ident: CR107 article-title: Shallow crustal mechanics from volumetric strain data: insights from Soufrière Hills Volcano, Montserrat publication-title: J Geophys Res – volume: 464 start-page: 249 year: 2010 end-page: 264 ident: CR20 article-title: Geologic mapping of the Colima volcanic complex (Mexico) and implications for hazard assessment publication-title: Geol Soc Am Spec Pap – volume: 75 start-page: 696 year: 2013 ident: CR43 article-title: The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes publication-title: Bull Volcanol – volume: 64 start-page: 349 year: 2002 end-page: 355 ident: CR113 article-title: Seismotectonic deformation of the volcanic edifice prior to the 1998 lava eruption of Volcán de Colima, México publication-title: Bull Volcanol – volume: 79 start-page: 1 year: 2006 end-page: 31 ident: CR33 article-title: How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes publication-title: Earth Sci Rev – volume: 177 start-page: 309 year: 2009 end-page: 318 ident: CR19 article-title: Two-dimensional gas loss for silicic magma flows: toward more realistic numerical models publication-title: Geophys J Int – volume: 78 start-page: 5922 year: 1973 end-page: 5941 ident: CR85 article-title: Stress-strain behavior of a granodiorite and two graywackes on compression to 20 kilobars publication-title: J Geophys Res – volume: 323 start-page: 598 year: 1986 end-page: 602 ident: CR24 article-title: Non-explosive silicic volcanism publication-title: Nature – volume: 42 start-page: 843 year: 2014 end-page: 846 ident: CR75 article-title: Permeability reduction of fractured rhyolite in volcanic conduits and its control on eruption cyclicity publication-title: Geology – ident: CR59 – volume: 116 start-page: 151 year: 2002 end-page: 160 ident: CR47 article-title: Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis publication-title: J Volcanol Geotherm Res – volume: 26 start-page: 603 year: 2004 end-page: 624 ident: CR5 article-title: Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity publication-title: J Struct Geol – volume: 174 start-page: 241 year: 2008 end-page: 256 ident: CR83 article-title: Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005 publication-title: J Volcanol Geotherm Res – volume: 42 start-page: 873 year: 2005 ident: 938_CR29 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2005.05.002 – volume: 42 start-page: 843 year: 2014 ident: 938_CR75 publication-title: Geology doi: 10.1130/G35855.1 – volume: 243–244 start-page: 1 year: 2012 ident: 938_CR18 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2012.06.027 – volume: 63 start-page: 50 year: 2014 ident: 938_CR27 publication-title: J Struct Geol doi: 10.1016/j.jsg.2014.02.008 – volume: 62 start-page: 331 year: 2000 ident: 938_CR52 publication-title: Bull Volcanol doi: 10.1007/s004450000103 – volume: 105 start-page: 19289 issue: B8 year: 2000 ident: 938_CR4 publication-title: J Geophys Res doi: 10.1029/2000JB900133 – volume: 86 start-page: 863 year: 2002 ident: 938_CR87 publication-title: AAPG Bull – volume: 503 start-page: 52 year: 2011 ident: 938_CR72 publication-title: Tectonophysics doi: 10.1016/j.tecto.2010.09.027 – volume: 73 start-page: 1417 year: 1968 ident: 938_CR86 publication-title: J Geophys Res doi: 10.1029/JB073i004p01417 – volume: 370 start-page: 641 year: 1994 ident: 938_CR106 publication-title: Nature doi: 10.1038/370641a0 – volume: 1 start-page: 137 year: 1965 ident: 938_CR42 publication-title: Int J Fract doi: 10.1007/BF00186851 – volume: 297 start-page: 52 year: 2015 ident: 938_CR26 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2015.03.016 – volume: 145 start-page: 73 year: 1998 ident: 938_CR46 publication-title: Geol Soc Lond, Spec Publ doi: 10.1144/GSL.SP.1996.145.01.05 – volume: 20 start-page: 299 year: 1992 ident: 938_CR90 publication-title: Geology doi: 10.1130/0091-7613(1992)020<0299:GDAFTC>2.3.CO;2 – volume: 387 start-page: 387 year: 1997 ident: 938_CR95 publication-title: Nature doi: 10.1038/387387a0 – ident: 938_CR6 doi: 10.1029/2005JB004101 – volume-title: Rock fractures in geological processes year: 2011 ident: 938_CR34 doi: 10.1017/CBO9780511975684 – volume: 32 start-page: 349 year: 2004 ident: 938_CR80 publication-title: Geology doi: 10.1130/G20388.2 – volume: 67 start-page: 75 year: 2014 ident: 938_CR17 publication-title: J Struct Geol doi: 10.1016/j.jsg.2014.07.008 – volume: 7 start-page: 1077 year: 2015 ident: 938_CR8 publication-title: Solid Earth Discuss doi: 10.5194/sed-7-1077-2015 – ident: 938_CR82 – volume: 119 start-page: 4360 year: 2014 ident: 938_CR57 publication-title: J Geophys Res doi: 10.1002/2013JB010884 – volume: 77 start-page: 34 year: 2015 ident: 938_CR84 publication-title: Bull Volcanol doi: 10.1007/s00445-015-0925-z – volume: 44 start-page: 25 year: 2012 ident: 938_CR104 publication-title: J Struct Geol doi: 10.1016/j.jsg.2012.07.010 – year: 2012 ident: 938_CR7 publication-title: J Geophys Res – volume: 267 start-page: 209 year: 1996 ident: 938_CR67 publication-title: Tectonophysics doi: 10.1016/S0040-1951(96)00098-4 – volume: 74 start-page: 249 year: 2012 ident: 938_CR54 publication-title: Bull Volcanol doi: 10.1007/s00445-011-0518-4 – volume: 405 start-page: 52 year: 2014 ident: 938_CR15 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2014.08.012 – volume: 110 start-page: 95 year: 1996 ident: 938_CR94 publication-title: Geol Soc Lond Spec Publ doi: 10.1144/GSL.SP.1996.110.01.07 – volume: 177 start-page: 309 year: 2009 ident: 938_CR19 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2008.04086.x – volume: 113 start-page: B11 year: 2008 ident: 938_CR65 publication-title: J Geophys Res – volume: 36 start-page: 399 year: 2008 ident: 938_CR68 publication-title: Geology doi: 10.1130/G24605A.1 – volume: 307 start-page: 191 year: 2011 ident: 938_CR88 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2011.04.044 – ident: 938_CR99 – volume: 108 start-page: B7 year: 2003 ident: 938_CR74 publication-title: J Geophys Res doi: 10.1029/2002JB001854 – volume: 25 start-page: 59 year: 2003 ident: 938_CR103 publication-title: J Struct Geol doi: 10.1016/S0191-8141(02)00014-7 – volume: 4 start-page: 201 year: 2013 ident: 938_CR70 publication-title: Solid Earth doi: 10.5194/se-4-201-2013 – volume: 29 start-page: 503 year: 2001 ident: 938_CR28 publication-title: Geology doi: 10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2 – volume: 28 start-page: 539 year: 2000 ident: 938_CR12 publication-title: Annu Rev Earth Planet Sci doi: 10.1146/annurev.earth.28.1.539 – volume: 143 start-page: 425 year: 1994 ident: 938_CR22 publication-title: Pure Appl Geophys doi: 10.1007/BF00874337 – volume: 350 start-page: 39 year: 1991 ident: 938_CR60 publication-title: Nature doi: 10.1038/350039a0 – volume: 245 start-page: 223 year: 1995 ident: 938_CR78 publication-title: Tectonophysics doi: 10.1016/0040-1951(94)00236-3 – ident: 938_CR58 doi: 10.1029/2012GL053218 – year: 2010 ident: 938_CR110 publication-title: J Geophys Res – volume: 278–279 start-page: 132 year: 2014 ident: 938_CR102 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2014.03.013 – volume: 91 start-page: 1 year: 1999 ident: 938_CR36 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(99)00047-5 – volume: 255 start-page: 12 year: 2013 ident: 938_CR1 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2013.01.011 – volume: 203 start-page: 168 year: 2011 ident: 938_CR69 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2011.04.006 – year: 2014 ident: 938_CR73 publication-title: Geology – volume: 117 start-page: 169 issue: 1-2 year: 2002 ident: 938_CR61 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(02)00243-3 – volume: 71 start-page: 3939 year: 1966 ident: 938_CR13 publication-title: J Geophys Res doi: 10.1029/JZ071i016p03939 – volume: 117 start-page: 69 year: 2002 ident: 938_CR71 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(02)00236-6 – volume: 306 start-page: 1543 year: 2004 ident: 938_CR31 publication-title: Science doi: 10.1126/science.1103445 – volume: 64 start-page: 349 year: 2002 ident: 938_CR113 publication-title: Bull Volcanol doi: 10.1007/s00445-002-0218-1 – volume: 63 start-page: 112 year: 2001 ident: 938_CR93 publication-title: Bull Volcanol doi: 10.1007/s004450100129 – volume: 284 start-page: 106 year: 2014 ident: 938_CR53 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2014.07.013 – volume: 37 start-page: 21 year: 2010 ident: 938_CR9 publication-title: Geophys Res Lett – volume: 117 start-page: 105 year: 2002 ident: 938_CR92 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(02)00239-1 – volume: 110 start-page: 1 year: 1996 ident: 938_CR62 publication-title: Geol Soc Lond doi: 10.1144/GSL.SP.1996.110.01.01 – ident: 938_CR63 doi: 10.1144/GSL.MEM.2002.021.01.07 – ident: 938_CR111 doi: 10.1029/2010JB008046 – ident: 938_CR41 doi: 10.1029/JB093iB05p04335 – volume: 99 start-page: 17791 year: 1994 ident: 938_CR10 publication-title: J Geophys Res doi: 10.1029/94JB00578 – volume: 5 start-page: 25 year: 2014 ident: 938_CR37 publication-title: Solid Earth doi: 10.5194/se-5-25-2014 – year: 2015 ident: 938_CR98 publication-title: Geophys Res Lett – volume: 41 start-page: 515 year: 2013 ident: 938_CR55 publication-title: Geology doi: 10.1130/G33948.1 – volume-title: Remote sensing of volcanoes & volcanic processes: integrating observation & modelling year: 2013 ident: 938_CR44 – volume: 245 start-page: 205 year: 1995 ident: 938_CR3 publication-title: Tectonophysics doi: 10.1016/0040-1951(94)00235-2 – volume: 26 start-page: 79 year: 1998 ident: 938_CR23 publication-title: Geology doi: 10.1130/0091-7613(1998)026<0079:EOTIPD>2.3.CO;2 – ident: 938_CR25 doi: 10.1029/GM056p0001 – volume: 122 start-page: 381 issue: 3-4 year: 1986 ident: 938_CR81 publication-title: Tectonophysics doi: 10.1016/0040-1951(86)90153-8 – ident: 938_CR101 doi: 10.1029/2006JB004501 – start-page: 263 volume-title: Volcanic degassing year: 2003 ident: 938_CR96 – volume-title: Experimental rock deformation—the brittle field year: 2005 ident: 938_CR76 – volume: 339–340 start-page: 24 year: 2012 ident: 938_CR66 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2012.05.014 – volume: 33 start-page: 243 year: 1983 ident: 938_CR100 publication-title: Geotechnique doi: 10.1680/geot.1983.33.3.243 – volume: 21 start-page: 1 year: 1984 ident: 938_CR35 publication-title: J Volcanol Geotherm Res doi: 10.1016/0377-0273(84)90013-1 – volume: 39 start-page: 22 year: 2012 ident: 938_CR45 publication-title: Geophys Res Lett doi: 10.1029/2012GL054245 – volume: 119 start-page: 2925 year: 2014 ident: 938_CR38 publication-title: J Geophys Res doi: 10.1002/2013JB010521 – volume: 174 start-page: 241 year: 2008 ident: 938_CR83 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2008.02.007 – volume: 323 start-page: 598 year: 1986 ident: 938_CR24 publication-title: Nature doi: 10.1038/323598a0 – volume: 3 start-page: 191 year: 2012 ident: 938_CR50 publication-title: Solid Earth doi: 10.5194/se-3-191-2012 – volume: 75 start-page: 696 year: 2013 ident: 938_CR43 publication-title: Bull Volcanol doi: 10.1007/s00445-013-0696-3 – volume: 52 start-page: 17 year: 2013 ident: 938_CR14 publication-title: J Struct Geol doi: 10.1016/j.jsg.2013.03.007 – volume: 464 start-page: 249 year: 2010 ident: 938_CR20 publication-title: Geol Soc Am Spec Pap doi: 10.1130/2010.2464(12) – volume: 205 start-page: 30 year: 2011 ident: 938_CR2 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2011.02.009 – volume: 26 start-page: 603 year: 2004 ident: 938_CR5 publication-title: J Struct Geol doi: 10.1016/j.jsg.2003.09.002 – ident: 938_CR59 doi: 10.1016/0148-9062(93)90041-B – volume: 177 start-page: 911 year: 2008 ident: 938_CR89 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2008.07.003 – ident: 938_CR16 doi: 10.1029/2012GL053739 – volume: 141 start-page: 65 year: 2005 ident: 938_CR51 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2004.09.005 – volume: 40 start-page: 847 year: 2003 ident: 938_CR21 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(03)00053-4 – volume: 76 start-page: 856 year: 2014 ident: 938_CR39 publication-title: Bull Volcanol doi: 10.1007/s00445-014-0856-0 – volume: 295 start-page: 26 year: 2015 ident: 938_CR40 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2015.02.012 – volume: 200 start-page: 49 year: 2011 ident: 938_CR77 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2010.12.002 – volume: 79 start-page: 1 year: 2006 ident: 938_CR33 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2006.06.006 – volume-title: Volcán de Colima: managing the threat year: 2015 ident: 938_CR56 – volume: 102 start-page: 3027 issue: B2 year: 1997 ident: 938_CR108 publication-title: J Geophys Res doi: 10.1029/96JB03282 – ident: 938_CR64 doi: 10.1016/0191-8141(95)00076-P – volume: 25 start-page: 199 year: 1997 ident: 938_CR109 publication-title: Mech Mater doi: 10.1016/S0167-6636(97)00011-2 – volume: 94 start-page: 2366 year: 2004 ident: 938_CR79 publication-title: Bull Seismol Soc Am doi: 10.1785/0120030259 – volume: 72 start-page: 1093 year: 2010 ident: 938_CR97 publication-title: Bull Volcanol doi: 10.1007/s00445-010-0390-7 – volume: 94 start-page: 995 year: 2009 ident: 938_CR49 publication-title: Am Mineral doi: 10.2138/am.2009.3129 – volume: 175 start-page: 45 year: 2008 ident: 938_CR32 publication-title: Journal of Volcanology and Geothermal Research doi: 10.1016/j.jvolgeores.2008.03.041 – volume: 78 start-page: 5922 year: 1973 ident: 938_CR85 publication-title: J Geophys Res doi: 10.1029/JB078i026p05922 – year: 2014 ident: 938_CR30 publication-title: Geology – volume: 80 start-page: 752 year: 1975 ident: 938_CR112 publication-title: J Geophys Res doi: 10.1029/JB080i005p00752 – volume: 2 start-page: 208 year: 1990 ident: 938_CR11 publication-title: Lava Flows Domes, IAVCEI Proc Volcanol doi: 10.1007/978-3-642-74379-5_9 – volume: 260 start-page: 117 year: 2013 ident: 938_CR48 publication-title: J Volcanol Geotherm Res doi: 10.1016/j.jvolgeores.2013.05.012 – volume: 108 start-page: 245 year: 2001 ident: 938_CR91 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(00)00289-4 – volume: 102 start-page: 3009 issue: B2 year: 1997 ident: 938_CR105 publication-title: J Geophys Res doi: 10.1029/96JB03281 – volume: 120 start-page: 1559 year: 2015 ident: 938_CR107 publication-title: J Geophys Res doi: 10.1002/2014JB011551 – volume: 116 start-page: 151 year: 2002 ident: 938_CR47 publication-title: J Volcanol Geotherm Res doi: 10.1016/S0377-0273(02)00216-0 – reference: 15567860 - Science. 2004 Nov 26;306(5701):1543-7 |
SSID | ssj0014367 |
Score | 2.412198 |
Snippet | The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under... The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under... The failure mode of lava--dilatant or compactant--depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55 |
SubjectTerms | Compaction Deformation Earth and Environmental Science Earth Sciences Fractures Geology Geophysics Geophysics/Geodesy Lava Mechanics Mechanics of materials Mineralogy Permeability Physical properties Physics Pore size Porosity Research Article Rocks Sciences of the Universe Sedimentology Volcanoes Volcanology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkhcUHmHFmQQJ1BE1nZi-1QV1GWFoEKISr1FfqorVdnS7lbqv--MNxtYKvaQS-wkznhe9oy_AXjXVMY22vrSalmX6P-r0hmCx3OJx8r5xgg67_z9uJmcyK-n9Wm_4XbVp1WudGJW1GHmaY_846jRSqLt5Org4ndJVaMoutqX0NiCHVTBGhdfO5-Ojn_8HOIIUuQasmjYdalNNcQ1qyWMqKTENbwMSr1as0xbZ5QXedfpvJs7-U8ANdul8S487B1KdrjkgEdwL3aP4f6XXLD35gmYMR2DWlxGZrvAcsZ5PsnAZonuUFWAyKYdswz1FJJ56hmas4Tq4ymcjI9-fZ6UfbmE0uKqZF4ma4VJKqDBiU3wiWvXcC-TVtqblGqHqiTJkQ11qCOPHmUxce60d8rTaR3xDLa7WRdfALNRGB_RdgseZBDSBmWcElGj-NIapIBqRarW91jiVNLivB1QkDN1W6RuS9RtVQHvh0culkAamzq_RfoP_QgCe3L4raV7GbOuFtX1qID91fS0veBdtX_YpIA3QzOKDMVBbBdnC-xDdRzQszV6Qx9cdqFnqA1-5vlyxofhEMQ9vgNb1BovrI13vaWbnmXobokOKnpMBXxYcc1fQ_8fNV5u_tE9eMAzF9PW0D5szy8X8RV6SnP3uheHW_spDYU priority: 102 providerName: ProQuest |
Title | Fracture and compaction of andesite in a volcanic edifice |
URI | https://link.springer.com/article/10.1007/s00445-015-0938-7 https://www.ncbi.nlm.nih.gov/pubmed/26321781 https://www.proquest.com/docview/1687497627 https://www.proquest.com/docview/1780519298 https://www.proquest.com/docview/1826623891 https://hal.science/hal-01180530 https://pubmed.ncbi.nlm.nih.gov/PMC4551152 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-WlsFeyr6Xrgve2NOGwZFkS3pMQtKwjzDGAt2TkWSJBoZT2qSw_353im2adivswRissyxOOt1Pvi-A90WmTaGMS40SeYr4X6ZWU3o8G5jPrCs0p3jnr4tivhSfzvKzJo77qvV2b02Scafugt3I9kiOZnhplFLZg8Ocju64iJds1JkOBI9lY1GXq1TprDNl_q2LPWXUOydXyLs486675C2baVRFs8dw1GDIZLSb9CfwwNdP4eFprNH7-xnoGUU-bS99YuoqiU7mMXghWQd6QoUAfLKqE5Pg1oScXbkENVjAHeM5LGfTH5N52lRISA0eRDZpMIbrICvUMb6oXGDKFsyJoKRyOoTc4u4RxNBUeZV75h2KX2DMKmelowAd_gIO6nXtX0FiPNfOo7rmrBIVF6aS2kruFUosHTv6kLWsKl2TPpyqWPwqu8THkbslcrck7payDx-6Vy52uTPuI36H_O_oKOv1fPSlpGcxTV3Os-thH07a6SkbWbsqh4WSAlEVwz7eds0oJWT6MLVfb5GGSjcgmNXqHho8aSEYVBo_83I3491wKKs99oEtcm8t7I13v6Vencds3QIxKYKkPnxsV82Nof-LG8f_Rf0aHrG4qOnn0AkcbC63_g1ipY0dwOFoNh4v6H768_MU7-Pp4tv3AfQmxWQQJecPXdAOEw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnRB7QXwTGGAQvIAiUseJ7QeEBqx0rKsQ2qS9BcextUpTOrYWtH-Kv5E7pwmUib7tIS-2kzjnu_PPuS-AF3miTa6MjY0SWYz4X8alpvR4pecuKW2uU4p33h_nw0Px-Sg7WoNfbSwMuVW2OjEo6mpq6R_5m36upMC9k8t3p99jqhpF1tW2hEbDFnvu4ice2c7f7n7E9X3J-WDn4MMwXlQViA2C91nsjUm1lxXqZZdX1nNV5twKr6Sy2vusRInzom-qrMocdxZZ1nNeKltKS0EtKT53HTZEikeZHmy83xl_-drZLbA1BGjzTMVKJ50dNWnSlgpylMNLo5aRSzvh-jH5YV4GuZd9Nf8x2IZ9cHATbiwALNtuOO4WrLn6Nlz7FAoEX9wBPaCwq_mZY6auWPBwD5ETbOqphaoQODapmWGoF3FZJ5bh9ulRXd2Fwysh5D3o1dPaPQBmXKqtQ6yQ8kpUqTCV1KVMnUJ1QWeeCJKWVIVd5C6nEhonRZd1OVC3QOoWRN1CRvCqu-W0SdyxavBzpH83jlJuD7dHBbWFHHlZmvzoR7DVLk-xEPTz4g9bRvCs60YRJbuLqd10jmOobgQiaa1WjMFjHiJRpfE195sV76ZDKfXxGdgjl3hhab7LPfXkOKQKFwiIEaFF8Lrlmr-m_j9qPFz9oU_h-vBgf1SMdsd7j2CTB46m31Jb0Judzd1jRGmz8slCNBh8u2pp_A2Z40vM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4EguHFiKicAlbjk2bDXtvdto_k4DwViQ-S8Nb0Z7jE7BG4M_G_d6a3u_FASXi4l-1cr5ntdL7ezHxDyPu61LZW1hdWiaoA_C8Lp5EezyUWS-drzbHe-dtZPTkXXy6qi7bP6U2X7d6FJJc1DcjS1MwPr0I67AvfMA6JSWfw0WCxco1swEUlx2lH9agPIwieW8iCX1eF0mUf1vzXFCuOae0S0yLvYs67qZO34qfZLY2fkictnqRHyw2wTR7F5hnZ_JT79f7eIXqMVVCL60htE2hOOM-FDHSW8Ak2BYh02lBL4ZgCLU89BW-W4PR4Ts7HJz9Gk6LtllBYuJTMi2Qt10kG8DexDj4x5WrmRVJSeZ1S5eAkSWJoQxWqyKIHU0yMOeWd9Fisw1-Q9WbWxF1CbeTaR3DdnAURuLBBaid5VGC9eAUZkLJTlfEtlTh2tPhpehLkrF0D2jWoXSMH5EP_laslj8Z9wu9A_70cMmBPjk4NPsuUdRUvfw0HZK97Paa1uxszrJUUgLAYzPG2HwaLwTCIbeJsATLYxgGArVb3yMCtC4Ch0vAzL5dvvF8OMtzDHDAiV_bCynpXR5rpZWbuFoBPATANyMdu1_y19P9p49WDpN-Qx9-Px-b089nX12SL5f2N_xntkfX59SLuA4Sau4NsJn8A1PcPpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+and+compaction+of+andesite+in+a+volcanic+edifice&rft.jtitle=Bulletin+of+volcanology&rft.au=Heap%2C+MJ&rft.au=Farquharson%2C+JI&rft.au=Baud%2C+P&rft.au=Lavallee%2C+Y&rft.date=2015-06-01&rft.issn=0258-8900&rft.eissn=1432-0819&rft.volume=77&rft.issue=6&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs00445-015-0938-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0258-8900&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0258-8900&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0258-8900&client=summon |