Fracture and compaction of andesite in a volcanic edifice

The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the effic...

Full description

Saved in:
Bibliographic Details
Published inBulletin of volcanology Vol. 77; no. 6; pp. 55 - 19
Main Authors Heap, M. J., Farquharson, J. I., Baud, P., Lavallée, Y., Reuschlé, T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2015
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
AbstractList The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcan de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
The failure mode of lava--dilatant or compactant--depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution, we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25 %) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (<1 km), both low- and high-porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (>1 km), while low-porosity (<10 %) lava remains dilatant, the failure of high-porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactant deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e. equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5 % reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under which it deforms. The failure mode for edifice host rock has attendant implications for the structural stability of the edifice and the efficiency of the sidewall outgassing of the volcanic conduit. In this contribution we present a systematic experimental study on the failure mode of edifice-forming andesitic rocks (porosity from 7 to 25%) from Volcán de Colima, Mexico. The experiments show that, at shallow depths (< 1 km), both low and high porosity lavas dilate and fail by shear fracturing. However, deeper in the edifice (> 1 km), while low porosity (< 10%) lava remains dilatant, the failure of high porosity lava is compactant and driven by cataclastic pore collapse. Although inelastic compaction is typically characterised by the absence of strain localisation, we observe compactive localisation features in our porous andesite lavas manifest as subplanar surfaces of collapsed pores. In terms of volcano stability, faulting in the upper edifice could destabilise the volcano, leading to an increased risk of flank or large-scale dome collapse, while compactive deformation deeper in the edifice may emerge as a viable mechanism driving volcano subsidence, spreading, and destabilisation. The failure mode influences the evolution of rock physical properties: permeability measurements demonstrate that a throughgoing tensile fracture increases sample permeability (i.e., equivalent permeability) by about a factor of two, and that inelastic compaction to an axial strain of 4.5% reduces sample permeability by an order of magnitude. The implication of these data is that sidewall outgassing may therefore be efficient in the shallow edifice, where rock can fracture, but may be impeded deeper in the edifice due to compaction. The explosive potential of a volcano may therefore be subject to increase over time if the progressive compaction and permeability reduction in the lower edifice cannot be offset by the formation of permeable fracture pathways in the upper edifice. The mode of failure of the edifice host rock is therefore likely to be an important factor controlling lateral outgassing and thus eruption style (effusive versus explosive) at stratovolcanoes.
ArticleNumber 55
Author Lavallée, Y.
Farquharson, J. I.
Baud, P.
Heap, M. J.
Reuschlé, T.
Author_xml – sequence: 1
  givenname: M. J.
  surname: Heap
  fullname: Heap, M. J.
  email: heap@unistra.fr
  organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST)
– sequence: 2
  givenname: J. I.
  surname: Farquharson
  fullname: Farquharson, J. I.
  organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST)
– sequence: 3
  givenname: P.
  surname: Baud
  fullname: Baud, P.
  organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST)
– sequence: 4
  givenname: Y.
  surname: Lavallée
  fullname: Lavallée, Y.
  organization: Earth, Ocean and Ecological Sciences, University of Liverpool
– sequence: 5
  givenname: T.
  surname: Reuschlé
  fullname: Reuschlé, T.
  organization: Équipe de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26321781$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01180530$$DView record in HAL
BookMark eNqNks9rFTEQx4NU7Gv1D_AiC170sDqT3c2Pi1CKtcIDL3oO2WzSpuxLnsnug_73ZtlW6gPFQwiZ-Xy_mUnmjJyEGCwhrxE-IAD_mAHatqsBy5KNqPkzssG2oTUIlCdkA7QTtZAAp-Qs5zuAkmT8BTmlrKHIBW6IvEraTHOylQ5DZeJuX44-hiq6JWKzn2zlQ6WrQxyNDt5UdvDOG_uSPHd6zPbVw35Oflx9_n55XW-_ffl6ebGtNaNsqp3WjXR8oKK1bDCOip5R0zrBhZHOdT1njWtRD93QWWoNIHeU9sL03ADj0JyTT6vvfu53djA2TEmPap_8Tqd7FbVXf2aCv1U38aDarkPsaDF4vxrcHsmuL7ZqiQGigK6BAxb23cNlKf6cbZ7Uzmdjx1EHG-esUFDGaCPkf6C8mKKkUhT07RF6F-cUyqspZIK3kjPKC_XmaaO_S338rALwFTAp5pysU8ZPevmt0rcfFYJaxkKtY1HaKquMhVqs8Uj5aP4vDV01ubDhxqYnRf9V9AuyKMeH
CitedBy_id crossref_primary_10_1007_s00603_018_1488_z
crossref_primary_10_1016_j_jvolgeores_2020_106964
crossref_primary_10_1007_s00126_024_01308_w
crossref_primary_10_1007_s00445_020_1370_1
crossref_primary_10_1016_j_jvolgeores_2016_04_024
crossref_primary_10_1016_j_jvolgeores_2016_10_015
crossref_primary_10_1007_s00445_018_1210_8
crossref_primary_10_1016_j_jvolgeores_2016_02_011
crossref_primary_10_1063_5_0212998
crossref_primary_10_1016_j_epsl_2017_01_021
crossref_primary_10_1029_2018JB016983
crossref_primary_10_1016_j_jvolgeores_2019_106703
crossref_primary_10_1016_j_jsg_2017_02_006
crossref_primary_10_1016_j_jvolgeores_2015_03_016
crossref_primary_10_5194_se_13_875_2022
crossref_primary_10_1016_j_jvolgeores_2018_10_021
crossref_primary_10_1093_gji_ggad377
crossref_primary_10_1007_s00445_023_01657_w
crossref_primary_10_1016_j_epsl_2016_05_004
crossref_primary_10_1016_j_jvolgeores_2016_03_013
crossref_primary_10_1016_j_jvolgeores_2017_11_015
crossref_primary_10_1080_00288306_2021_1885048
crossref_primary_10_3389_feart_2018_00253
crossref_primary_10_1016_j_jvolgeores_2019_01_020
crossref_primary_10_1002_2017GL074042
crossref_primary_10_1016_j_enggeo_2022_106554
crossref_primary_10_3389_feart_2021_680051
crossref_primary_10_1098_rsos_240792
crossref_primary_10_3390_rs14153526
crossref_primary_10_1038_s41598_017_08108_5
crossref_primary_10_1029_2019JB018099
crossref_primary_10_3389_feart_2019_00007
crossref_primary_10_1016_j_epsl_2020_116571
crossref_primary_10_1093_gji_ggaa437
crossref_primary_10_5194_se_8_561_2017
crossref_primary_10_2138_rmg_2022_87_15
crossref_primary_10_2138_am_2018_6714
crossref_primary_10_1016_j_jvolgeores_2018_07_004
crossref_primary_10_1029_2018JB016130
crossref_primary_10_1029_2022JB024600
crossref_primary_10_1144_SP519_2020_131
crossref_primary_10_1016_j_jmps_2022_105160
crossref_primary_10_1155_2020_3878503
crossref_primary_10_1007_s00445_016_1082_8
crossref_primary_10_1016_j_jvolgeores_2018_03_003
crossref_primary_10_1029_2018JB016719
crossref_primary_10_1016_j_pepi_2017_05_007
crossref_primary_10_1016_j_jvolgeores_2018_04_008
crossref_primary_10_1016_j_jvolgeores_2020_107038
crossref_primary_10_1007_s00445_019_1275_z
crossref_primary_10_1007_s00445_020_01433_0
crossref_primary_10_1007_s00445_024_01742_8
crossref_primary_10_1016_j_mineng_2020_106663
crossref_primary_10_1029_2019GC008409
crossref_primary_10_1016_j_petrol_2022_110375
crossref_primary_10_1029_2019JB017399
crossref_primary_10_1016_j_jvolgeores_2016_05_007
crossref_primary_10_1016_j_jvolgeores_2017_07_019
crossref_primary_10_1029_2018JB017253
crossref_primary_10_1007_s00445_019_1306_9
crossref_primary_10_1016_j_jvolgeores_2022_107551
crossref_primary_10_1029_2021JB022514
crossref_primary_10_1007_s10346_017_0901_0
crossref_primary_10_1016_j_jvolgeores_2019_106684
crossref_primary_10_1016_j_enggeo_2022_106696
crossref_primary_10_1016_j_icarus_2020_113873
crossref_primary_10_1093_petrology_egz016
crossref_primary_10_1038_s41598_018_36505_x
crossref_primary_10_1016_j_jvolgeores_2021_107348
crossref_primary_10_1038_s41598_017_05460_4
crossref_primary_10_1029_2020JB021321
crossref_primary_10_1007_s00445_021_01447_2
crossref_primary_10_1038_s41598_022_06765_9
crossref_primary_10_1155_2020_9057193
crossref_primary_10_1016_j_jvolgeores_2018_02_002
crossref_primary_10_3390_geosciences10040138
crossref_primary_10_5194_essd_12_2485_2020
crossref_primary_10_1007_s00445_015_0997_9
crossref_primary_10_1007_s00603_019_01785_w
crossref_primary_10_1002_2016GL071540
crossref_primary_10_1038_s41598_022_26721_x
crossref_primary_10_1002_2017JB015250
Cites_doi 10.1016/j.ijrmms.2005.05.002
10.1130/G35855.1
10.1016/j.jvolgeores.2012.06.027
10.1016/j.jsg.2014.02.008
10.1007/s004450000103
10.1029/2000JB900133
10.1016/j.tecto.2010.09.027
10.1029/JB073i004p01417
10.1038/370641a0
10.1007/BF00186851
10.1016/j.jvolgeores.2015.03.016
10.1144/GSL.SP.1996.145.01.05
10.1130/0091-7613(1992)020<0299:GDAFTC>2.3.CO;2
10.1038/387387a0
10.1029/2005JB004101
10.1017/CBO9780511975684
10.1130/G20388.2
10.1016/j.jsg.2014.07.008
10.5194/sed-7-1077-2015
10.1002/2013JB010884
10.1007/s00445-015-0925-z
10.1016/j.jsg.2012.07.010
10.1016/S0040-1951(96)00098-4
10.1007/s00445-011-0518-4
10.1016/j.epsl.2014.08.012
10.1144/GSL.SP.1996.110.01.07
10.1111/j.1365-246X.2008.04086.x
10.1130/G24605A.1
10.1016/j.epsl.2011.04.044
10.1029/2002JB001854
10.1016/S0191-8141(02)00014-7
10.5194/se-4-201-2013
10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2
10.1146/annurev.earth.28.1.539
10.1007/BF00874337
10.1038/350039a0
10.1016/0040-1951(94)00236-3
10.1029/2012GL053218
10.1016/j.jvolgeores.2014.03.013
10.1016/S0377-0273(99)00047-5
10.1016/j.jvolgeores.2013.01.011
10.1016/j.jvolgeores.2011.04.006
10.1016/S0377-0273(02)00243-3
10.1029/JZ071i016p03939
10.1016/S0377-0273(02)00236-6
10.1126/science.1103445
10.1007/s00445-002-0218-1
10.1007/s004450100129
10.1016/j.jvolgeores.2014.07.013
10.1016/S0377-0273(02)00239-1
10.1144/GSL.SP.1996.110.01.01
10.1144/GSL.MEM.2002.021.01.07
10.1029/2010JB008046
10.1029/JB093iB05p04335
10.1029/94JB00578
10.5194/se-5-25-2014
10.1130/G33948.1
10.1016/0040-1951(94)00235-2
10.1130/0091-7613(1998)026<0079:EOTIPD>2.3.CO;2
10.1029/GM056p0001
10.1016/0040-1951(86)90153-8
10.1029/2006JB004501
10.1016/j.epsl.2012.05.014
10.1680/geot.1983.33.3.243
10.1016/0377-0273(84)90013-1
10.1029/2012GL054245
10.1002/2013JB010521
10.1016/j.jvolgeores.2008.02.007
10.1038/323598a0
10.5194/se-3-191-2012
10.1007/s00445-013-0696-3
10.1016/j.jsg.2013.03.007
10.1130/2010.2464(12)
10.1016/j.jvolgeores.2011.02.009
10.1016/j.jsg.2003.09.002
10.1016/0148-9062(93)90041-B
10.1016/j.jvolgeores.2008.07.003
10.1029/2012GL053739
10.1016/j.jvolgeores.2004.09.005
10.1016/S1365-1609(03)00053-4
10.1007/s00445-014-0856-0
10.1016/j.jvolgeores.2015.02.012
10.1016/j.jvolgeores.2010.12.002
10.1016/j.earscirev.2006.06.006
10.1029/96JB03282
10.1016/0191-8141(95)00076-P
10.1016/S0167-6636(97)00011-2
10.1785/0120030259
10.1007/s00445-010-0390-7
10.2138/am.2009.3129
10.1016/j.jvolgeores.2008.03.041
10.1029/JB078i026p05922
10.1029/JB080i005p00752
10.1007/978-3-642-74379-5_9
10.1016/j.jvolgeores.2013.05.012
10.1016/S0377-0273(00)00289-4
10.1029/96JB03281
10.1002/2014JB011551
10.1016/S0377-0273(02)00216-0
ContentType Journal Article
Copyright The Author(s) 2015
Springer-Verlag Berlin Heidelberg 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2015
– notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
NPM
3V.
7TG
7TN
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
1XC
VOOES
5PM
DOI 10.1007/s00445-015-0938-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1432-0819
EndPage 19
ExternalDocumentID PMC4551152
oai_HAL_hal_01180530v1
3712634751
26321781
10_1007_s00445_015_0938_7
Genre Journal Article
Feature
GeographicLocations Mexico, Colima
GeographicLocations_xml – name: Mexico, Colima
GroupedDBID -5A
-5G
-5~
-BR
-DZ
-EM
-Y2
-~C
.86
06D
0R~
0VY
199
1N0
1SB
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMOR
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
P19
P2P
PCBAR
PF0
PKN
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WK6
WK8
XJT
XOL
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z86
Z8M
Z8S
Z8T
ZMTXR
~02
~A9
~EX
~S-
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
7TG
7TN
7XB
8FK
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-a626t-faa39f7d284e6dcf28b62c4f878c9ff5b763f41ad5d5e2ec017f22b8cb7c06703
IEDL.DBID U2A
ISSN 0258-8900
IngestDate Thu Aug 21 14:09:32 EDT 2025
Thu Jul 10 08:57:49 EDT 2025
Fri Jul 11 07:50:22 EDT 2025
Thu Jul 10 17:49:32 EDT 2025
Sun Jul 13 03:55:58 EDT 2025
Mon Jul 21 06:05:10 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Tue Jul 01 00:37:21 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Shear fracture
Outgassing
Pore collapse
Brittle
Stratovolcano
Inelastic compaction
Edifice stability
Volcán de Colima
Permeability
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a626t-faa39f7d284e6dcf28b62c4f878c9ff5b763f41ad5d5e2ec017f22b8cb7c06703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4551152
Editorial responsibility: A. Gudmundsson
ORCID 0000-0003-4933-2607
0000-0002-0490-5072
0000-0002-4748-735X
OpenAccessLink https://link.springer.com/10.1007/s00445-015-0938-7
PMID 26321781
PQID 1687497627
PQPubID 54164
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551152
hal_primary_oai_HAL_hal_01180530v1
proquest_miscellaneous_1826623891
proquest_miscellaneous_1780519298
proquest_journals_1687497627
pubmed_primary_26321781
crossref_citationtrail_10_1007_s00445_015_0938_7
crossref_primary_10_1007_s00445_015_0938_7
springer_journals_10_1007_s00445_015_0938_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Official Journal of the International Association of Volcanology and Chemistry of the Earth`s Interior (IAVCEI)
PublicationTitle Bulletin of volcanology
PublicationTitleAbbrev Bull Volcanol
PublicationTitleAlternate Bull Volcanol
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Voight, Janda, Glicken, Douglass (CR100) 1983; 33
Bernard, Kueppers, Ortiz (CR8) 2015; 7
Borgia, Linneman (CR11) 1990; 2
Collombet (CR19) 2009; 177
Taran, Bernard, Gavilanes, Lunezheva, Cortés, Armienta (CR91) 2001; 108
Lavallée, Benson, Heap, Hess, Flaws, Schillinger, Meredith, Dingwell (CR55) 2013; 41
Baud, Klein, Wong (CR5) 2004; 26
Lamb, Varley, Mather, Pyle, Smith, Liu (CR53) 2014; 284
Baud, Townend, Meredith (CR7) 2012
Baud, Schubnel, Wong (CR4) 2000; 105
Heap, Xu, Chen (CR39) 2014; 76
Collinson, Neuberg (CR18) 2012; 243–244
Hoek, Bieniawski (CR42) 1965; 1
Jaupart (CR46) 1998; 145
Mueller, Scheu, Spieler, Richard, Dingwell (CR69) 2011; 203
Pinel, Hooper, De la Cruz-Reyna, Reyes-Davila, Doin, Bascou (CR77) 2011; 200
Cilona, Faulkner, Tondi, Agosta, Mancini, Rustichelli, Baud, Vinciguerra (CR17) 2014; 67
Ayling, Meredith, Murrell (CR3) 1995; 245
Luhr (CR61) 2002; 117
van Wyk de Vries, Borgia (CR94) 1996; 110
Varley, Arámbula-Mendoza, Reyes-Dávila, Stevenson, Harwood (CR97) 2010; 72
Cuss, Rutter, Holloway (CR21) 2003; 40
James, Varley (CR45) 2012; 39
Gerst, Savage (CR31) 2004; 306
Hutchinson, Varley, Pyle, Mather, Pyle (CR44) 2013
Heap, Baud, Meredith, Vinciguerra, Reuschlé (CR37) 2014; 5
Kolzenburg, Heap, Lavallée, Russell, Meredith, Dingwell (CR50) 2012; 3
Heap, Kennedy, Pernin, Jacquemard, Baud, Farquharson, Scheu, Lavallée, Gilg, Letham-Brake, Mayer, Jolly, Reuschlé, Dingwell (CR40) 2015; 295
Nara, Meredith, Yoneda, Kaneko (CR72) 2011; 503
Wong, Baud (CR104) 2012; 44
Fortin, Schubnel, Gueguen (CR29) 2005; 42
Stoopes, Sheridan (CR90) 1992; 20
CR41
Mueller, Scheu, Spieler, Dingwell (CR68) 2008; 36
Kueppers, Scheu, Spieler, Dingwell (CR51) 2005; 141
Kaneko (CR47) 2002; 116
Mueller, Varley, Kueppers, Lesage, Reyes Davila, Dingwell (CR70) 2013; 4
Faulkner, Rutter (CR28) 2001; 29
Gaunt, Sammonds, Meredith, Smith, Pallister (CR30) 2014
Farrell, Healy, Taylor (CR27) 2014; 63
Heap, Lavallée, Petrakova, Baud, Reuschlé, Varley, Dingwell (CR38) 2014; 119
Gudmundsson (CR34) 2011
Schipper, Castro, Tuffen, Wadsworth, Chappell, Pantoja, Simpson, Le Ru (CR84) 2015; 77
Varley, Taran, Oppenheimer, Pyle, Barclay (CR96) 2003
Kennedy, Russell, Nelles (CR49) 2009; 94
CR59
Wong, David, Zhu (CR105) 1997; 102
CR58
Adelinet, Fortin, Schubnel, Guéguen (CR1) 2013; 255
Rust, Cashman, Wallace (CR80) 2004; 32
Cortés, Garduño, Macías, Navarro-Ochoa, Komorowski, Saucedo, Gavilanes (CR20) 2010; 464
Lockner, Byerlee, Kuksenko, Ponomarev, Sidorin (CR60) 1991; 350
Biggs, Mothes, Ruiz, Amelung, Dixon, Baker, Hong (CR9) 2010; 37
Horwell, Williamson, Llewellin, Damby, Le Blond (CR43) 2013; 75
Zoback, Byerlee (CR112) 1975; 80
Farquharson, Heap, Varley, Baud, Reuschlé (CR26) 2015; 297
McGuire (CR62) 1996; 110
Gudmundsson (CR33) 2006; 79
Zhu, Montesi, Wong (CR109) 1997; 25
CR64
CR63
Zhu, Baud, Wong (CR110) 2010
Kendrick, Lavallée, Hess, Heap, Gaunt, Meredith, Dingwell (CR48) 2013; 260
Mitchell, Faulkner (CR66) 2012; 339–340
Mollema, Antonellini (CR67) 1996; 267
Murray, Wooller (CR71) 2002; 117
Savov, Luhr, Navarro-Ochoa (CR83) 2008; 174
Read, Ayling, Meredith, Murrell (CR78) 1995; 245
Violay, Gibert, Mainprice, Burg (CR98) 2015
CR111
Smith, Sammonds, Tuffen, Meredith (CR88) 2011; 307
Young, Gottsmann (CR107) 2015; 120
Shipton, Evans, Robeson, Forster, Snelgrove (CR87) 2002; 86
CR6
Zobin, González-Amezcua, Reyes-Dávila (CR113) 2002; 64
Arámbula-Mendoza, Lesage, Valdés-González, Varley, Reyes-Dávila, Navarro (CR2) 2011; 205
Mitchell, Faulkner (CR65) 2008; 113
Goto, Nakata, Kurokawa, Shimano, Sugimoto, Sakuma, Hoshizumi, Yoshimoto, Uto (CR32) 2008; 175
Paterson, Wong (CR76) 2005
Rutter (CR81) 1986; 122
CR82
Guest, Chester, Duncan (CR35) 1984; 21
Borgia (CR10) 1994; 99
Taran, Gavilanes, Cortés (CR92) 2002; 117
Ngwenya, Kwon, Elphick, Main (CR74) 2003; 108
Webb, Varley, Pyle, Mather (CR102) 2014; 278–279
Okumura, Sasaki (CR75) 2014; 42
Schock, Heard, Stephans (CR85) 1973; 78
Borgia, Delaney, Denlinger (CR12) 2000; 28
Lavallée, Heap, Kueppers, Kendrick, Dingwell, Varley, Komorowski (CR56) 2015
David, Wong, Zhu, Zhang (CR22) 1994; 143
Lesage, Reyes-Dávila, Arámbula-Mendoza (CR57) 2014; 119
CR16
Castro, Bindeman, Tuffen, Schipper (CR15) 2014; 405
Roman, Moran, Power, Cashman (CR79) 2004; 94
van Wyk de Vries, Francis (CR95) 1997; 387
CR99
Hall, Robin, Beate, Mothes, Monzier (CR36) 1999; 91
Lavallée, Varley, Alatorre-Ibargüengoitia, Hess, Kueppers, Mueller, Richard, Scheu, Spieler, Dingwell (CR54) 2012; 74
Nguyen, Gonnermann, Houghton (CR73) 2014
Tibaldi (CR93) 2001; 63
Scholz (CR86) 1968; 73
Brace, Paulding, Scholz (CR13) 1966; 71
Lagmay, van Wyk de Vries, Kerle, Pyle (CR52) 2000; 62
Woods, Koyaguchi (CR106) 1994; 370
CR25
Donnadieu, Merle (CR23) 1998; 26
Brantut, Heap, Meredith, Baud (CR14) 2013; 52
Eichelberger, Carrigan, Westrich, Price (CR24) 1986; 323
CR101
Wibberley, Shimamoto (CR103) 2003; 25
Stevenson, Varley (CR89) 2008; 177
Zhu, Wong (CR108) 1997; 102
938_CR82
K Kaneko (938_CR47) 2002; 116
A Gudmundsson (938_CR33) 2006; 79
CJ Horwell (938_CR43) 2013; 75
W Zhu (938_CR109) 1997; 25
VM Zobin (938_CR113) 2002; 64
SB Mueller (938_CR70) 2013; 4
MJ Heap (938_CR40) 2015; 295
A Gudmundsson (938_CR34) 2011
Y Lavallée (938_CR56) 2015
B Wyk de Vries van (938_CR95) 1997; 387
T-f Wong (938_CR105) 1997; 102
W Zhu (938_CR108) 1997; 102
B Bernard (938_CR8) 2015; 7
CT Nguyen (938_CR73) 2014
B Wyk de Vries van (938_CR94) 1996; 110
Y Lavallée (938_CR55) 2013; 41
ASD Collinson (938_CR18) 2012; 243–244
IP Savov (938_CR83) 2008; 174
B Voight (938_CR100) 1983; 33
ML Hall (938_CR36) 1999; 91
JE Kendrick (938_CR48) 2013; 260
Y Lavallée (938_CR54) 2012; 74
P Lesage (938_CR57) 2014; 119
A Cilona (938_CR17) 2014; 67
NR Varley (938_CR96) 2003
RN Schock (938_CR85) 1973; 78
W Zhu (938_CR110) 2010
DR Faulkner (938_CR28) 2001; 29
938_CR64
D Lockner (938_CR60) 1991; 350
J Castro (938_CR15) 2014; 405
938_CR63
938_CR111
A Cortés (938_CR20) 2010; 464
TM Mitchell (938_CR66) 2012; 339–340
W Hutchinson (938_CR44) 2013
Y Nara (938_CR72) 2011; 503
A Borgia (938_CR11) 1990; 2
V Pinel (938_CR77) 2011; 200
AW Woods (938_CR106) 1994; 370
A Tibaldi (938_CR93) 2001; 63
RJ Cuss (938_CR21) 2003; 40
P Baud (938_CR5) 2004; 26
U Kueppers (938_CR51) 2005; 141
PN Mollema (938_CR67) 1996; 267
Y Taran (938_CR92) 2002; 117
HE Gaunt (938_CR30) 2014
E Rutter (938_CR81) 1986; 122
938_CR101
J Fortin (938_CR29) 2005; 42
F Donnadieu (938_CR23) 1998; 26
J Biggs (938_CR9) 2010; 37
GR Stoopes (938_CR90) 1992; 20
MR Ayling (938_CR3) 1995; 245
938_CR58
E Hoek (938_CR42) 1965; 1
CI Schipper (938_CR84) 2015; 77
R Arámbula-Mendoza (938_CR2) 2011; 205
A Borgia (938_CR10) 1994; 99
938_CR59
TM Mitchell (938_CR65) 2008; 113
S Mueller (938_CR69) 2011; 203
N Brantut (938_CR14) 2013; 52
LA Kennedy (938_CR49) 2009; 94
938_CR41
Y Goto (938_CR32) 2008; 175
NJC Farrell (938_CR27) 2014; 63
YA Taran (938_CR91) 2001; 108
M Violay (938_CR98) 2015
M Collombet (938_CR19) 2009; 177
MR James (938_CR45) 2012; 39
JB Murray (938_CR71) 2002; 117
C David (938_CR22) 1994; 143
BT Ngwenya (938_CR74) 2003; 108
JE Guest (938_CR35) 1984; 21
P Baud (938_CR7) 2012
NK Young (938_CR107) 2015; 120
ZK Shipton (938_CR87) 2002; 86
WF Brace (938_CR13) 1966; 71
S Mueller (938_CR68) 2008; 36
AMF Lagmay (938_CR52) 2000; 62
M Adelinet (938_CR1) 2013; 255
S Okumura (938_CR75) 2014; 42
CH Scholz (938_CR86) 1968; 73
MJ Heap (938_CR37) 2014; 5
JC Eichelberger (938_CR24) 1986; 323
A Borgia (938_CR12) 2000; 28
AC Rust (938_CR80) 2004; 32
DC Roman (938_CR79) 2004; 94
R Smith (938_CR88) 2011; 307
MD Zoback (938_CR112) 1975; 80
938_CR6
JF Luhr (938_CR61) 2002; 117
MJ Heap (938_CR39) 2014; 76
C Jaupart (938_CR46) 1998; 145
MS Paterson (938_CR76) 2005
938_CR25
JA Stevenson (938_CR89) 2008; 177
WJ McGuire (938_CR62) 1996; 110
OD Lamb (938_CR53) 2014; 284
T-f Wong (938_CR104) 2012; 44
MJ Heap (938_CR38) 2014; 119
N Varley (938_CR97) 2010; 72
IJ Farquharson (938_CR26) 2015; 297
MD Read (938_CR78) 1995; 245
A Gerst (938_CR31) 2004; 306
P Baud (938_CR4) 2000; 105
CAJ Wibberley (938_CR103) 2003; 25
938_CR99
S Kolzenburg (938_CR50) 2012; 3
938_CR16
EB Webb (938_CR102) 2014; 278–279
15567860 - Science. 2004 Nov 26;306(5701):1543-7
References_xml – volume: 29
  start-page: 503
  year: 2001
  end-page: 506
  ident: CR28
  article-title: Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness?
  publication-title: Geology
– year: 2005
  ident: CR76
  publication-title: Experimental rock deformation—the brittle field
– volume: 105
  start-page: 19289
  issue: B8
  year: 2000
  end-page: 19303
  ident: CR4
  article-title: Dilatancy, compaction, and failure mode in Solnhofen limestone
  publication-title: J Geophys Res
– volume: 26
  start-page: 79
  year: 1998
  end-page: 82
  ident: CR23
  article-title: Experiments on the identation process during cryptodome intrusions: new insights into Mount St. Helens deformation
  publication-title: Geology
– volume: 307
  start-page: 191
  year: 2011
  end-page: 200
  ident: CR88
  article-title: Evolution of the mechanics of the 2004–2008 Mt. St. Helens lava dome with time and temperature
  publication-title: Earth Planet Sci Lett
– volume: 37
  start-page: 21
  year: 2010
  ident: CR9
  article-title: Stratovolcano growth by co-eruptive intrusion: the 2008 eruption of Tungurahua Ecuador
  publication-title: Geophys Res Lett
– volume: 205
  start-page: 30
  year: 2011
  end-page: 46
  ident: CR2
  article-title: Seismic activity that accompanied the effusive and explosive eruptions during the 2004–2005 period at Volcán de Colima, Mexico
  publication-title: J Volcanol Geotherm Res
– ident: CR16
– volume: 119
  start-page: 4360
  year: 2014
  end-page: 4376
  ident: CR57
  article-title: Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in Volcán de Colima, Mexico
  publication-title: J Geophys Res
– volume: 41
  start-page: 515
  year: 2013
  end-page: 518
  ident: CR55
  article-title: Reconstructing magma failure and the degassing network of dome-building eruptions
  publication-title: Geology
– volume: 20
  start-page: 299
  year: 1992
  end-page: 302
  ident: CR90
  article-title: Giant debris avalanches from the Colima Volcanic Complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment
  publication-title: Geology
– volume: 113
  start-page: B11
  year: 2008
  ident: CR65
  article-title: Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones
  publication-title: J Geophys Res
– volume: 94
  start-page: 2366
  year: 2004
  end-page: 2379
  ident: CR79
  article-title: Temporal and spatial variation of local stress fields before and after the 1992 eruptions of crater peak vent, Mount Spurr Volcano, Alaska
  publication-title: Bull Seismol Soc Am
– ident: CR25
– volume: 63
  start-page: 112
  year: 2001
  end-page: 125
  ident: CR93
  article-title: Multiple sector collapses at stromboli volcano, Italy: how they work
  publication-title: Bull Volcanol
– year: 2015
  ident: CR56
  article-title: The fragility of Volcán de Colima—a material constraint
  publication-title: Volcán de Colima: managing the threat
– volume: 80
  start-page: 752
  year: 1975
  end-page: 755
  ident: CR112
  article-title: The effect of microcrack dilatancy on the permeability of westerly granite
  publication-title: J Geophys Res
– volume: 4
  start-page: 201
  year: 2013
  end-page: 213
  ident: CR70
  article-title: Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico
  publication-title: Solid Earth
– ident: CR101
– volume: 71
  start-page: 3939
  year: 1966
  end-page: 3953
  ident: CR13
  article-title: Dilatancy in the fracture of crystalline rocks
  publication-title: J Geophys Res
– volume: 73
  start-page: 1417
  year: 1968
  end-page: 1432
  ident: CR86
  article-title: Microfracturing and the inelastic deformation of rock in compression
  publication-title: J Geophys Res
– volume: 39
  start-page: 22
  year: 2012
  ident: CR45
  article-title: Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico
  publication-title: Geophys Res Lett
– volume: 21
  start-page: 1
  year: 1984
  end-page: 23
  ident: CR35
  article-title: The Valle del Bove, Mount Etna: its origin and relation to the stratigraphy and structure of the volcano
  publication-title: J Volcanol Geotherm Res
– volume: 28
  start-page: 539
  year: 2000
  end-page: 570
  ident: CR12
  article-title: Spreading volcanoes
  publication-title: Annu Rev Earth Planet Sci
– volume: 63
  start-page: 50
  year: 2014
  end-page: 67
  ident: CR27
  article-title: Anisotropy of permeability in faulted porous sandstones
  publication-title: J Struct Geol
– volume: 245
  start-page: 223
  year: 1995
  end-page: 235
  ident: CR78
  article-title: Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, II. Pore volumometry and acoustic emission measurements on water-saturated rocks
  publication-title: Tectonophysics
– year: 2011
  ident: CR34
  publication-title: Rock fractures in geological processes
– volume: 40
  start-page: 847
  year: 2003
  end-page: 862
  ident: CR21
  article-title: The application of critical state soil mechanics to the mechanical behaviour of porous sandstones
  publication-title: Int J Rock Mech Min Sci
– volume: 200
  start-page: 49
  year: 2011
  end-page: 61
  ident: CR77
  article-title: The challenging retrieval of the displacement field from InSAR data for andesitic stratovolcanoes: case study of Popocatepetl and Colima Volcano, Mexico
  publication-title: J Volcanol Geotherm Res
– volume: 2
  start-page: 208
  year: 1990
  end-page: 243
  ident: CR11
  article-title: On the mechanisms of lava flow emplacement and volcano growth: Arenal, Costa Rica
  publication-title: Lava Flows Domes, IAVCEI Proc Volcanol
– volume: 108
  start-page: B7
  year: 2003
  ident: CR74
  article-title: Permeability evolution during progressive development of deformation bands in porous sandstones
  publication-title: J Geophys Res
– volume: 72
  start-page: 1093
  year: 2010
  end-page: 1107
  ident: CR97
  article-title: Long-period seismicity during magma movement at Volcán de Colima
  publication-title: Bull Volcanol
– year: 2010
  ident: CR110
  article-title: Micromechanics of cataclastic pore collapse in limestone
  publication-title: J Geophys Res
– year: 2013
  ident: CR44
  article-title: Airborne thermal remote sensing of the Volcán de Colima (Mexico) lava dome from 2007 to 2010
  publication-title: Remote sensing of volcanoes & volcanic processes: integrating observation & modelling
– volume: 32
  start-page: 349
  year: 2004
  end-page: 352
  ident: CR80
  article-title: Magma degassing buffered by vapor flow through brecciated conduit margins
  publication-title: Geology
– volume: 297
  start-page: 52
  year: 2015
  end-page: 68
  ident: CR26
  article-title: Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study
  publication-title: J Volcanol Geotherm Res
– ident: CR6
– volume: 117
  start-page: 105
  year: 2002
  end-page: 119
  ident: CR92
  article-title: Chemical and isotopic composition of fumarolic gases and the SO2 flux from Volcán de Colima, Mexico, between the 1994 and 1998 eruptions
  publication-title: J Volcanol Geotherm Res
– ident: CR63
– volume: 278–279
  start-page: 132
  year: 2014
  end-page: 145
  ident: CR102
  article-title: Thermal imaging and analysis of short-lived Vulcanian explosions at Volcán de Colima, Mexico
  publication-title: J Volcanol Geotherm Res
– volume: 350
  start-page: 39
  year: 1991
  end-page: 42
  ident: CR60
  article-title: Quasi-static fault growth and shear fracture energy in granite
  publication-title: Nature
– volume: 119
  start-page: 2925
  year: 2014
  end-page: 2963
  ident: CR38
  article-title: Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico
  publication-title: J Geophys Res
– volume: 94
  start-page: 995
  year: 2009
  end-page: 1004
  ident: CR49
  article-title: Origins of mount St. Helens cataclasites: experimental insights
  publication-title: Am Mineral
– volume: 295
  start-page: 26
  year: 2015
  end-page: 42
  ident: CR40
  article-title: Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand
  publication-title: J Volcanol Geotherm Res
– volume: 52
  start-page: 17
  year: 2013
  end-page: 43
  ident: CR14
  article-title: Time-dependent cracking and brittle creep in crustal rocks: a review
  publication-title: J Struct Geol
– volume: 141
  start-page: 65
  year: 2005
  end-page: 75
  ident: CR51
  article-title: Field-based density measurements as tool to identify pre-eruption dome structure: set-up and first results from Unzen volcano, Japan
  publication-title: J Volcanol Geotherm Res
– volume: 203
  start-page: 168
  year: 2011
  end-page: 174
  ident: CR69
  article-title: The porosity of pyroclasts as an indicator of volcanic explosivity
  publication-title: J Volcanol Geotherm Res
– volume: 143
  start-page: 425
  year: 1994
  end-page: 456
  ident: CR22
  article-title: Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust
  publication-title: Pure Appl Geophys
– volume: 175
  start-page: 45
  year: 2008
  end-page: 59
  ident: CR32
  article-title: Character and origin of lithofacies in the conduit of Unzen volcano, Japan
  publication-title: Journal of Volcanology and Geothermal Research
– ident: CR41
– volume: 284
  start-page: 106
  year: 2014
  end-page: 121
  ident: CR53
  article-title: Multiple timescales of cyclical behaviour observed at two dome-forming eruptions
  publication-title: J Volcanol Geotherm Res
– volume: 405
  start-page: 52
  year: 2014
  end-page: 61
  ident: CR15
  article-title: Explosive origin of silicic lava: textural and δD–H O evidence for pyroclastic degassing during rhyolite effusion
  publication-title: Earth Planet Sci Lett
– volume: 86
  start-page: 863
  year: 2002
  end-page: 883
  ident: CR87
  article-title: Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modeling of faults
  publication-title: AAPG Bull
– volume: 387
  start-page: 387
  year: 1997
  end-page: 390
  ident: CR95
  article-title: Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading
  publication-title: Nature
– volume: 145
  start-page: 73
  year: 1998
  end-page: 90
  ident: CR46
  article-title: Gas loss from magmas through conduit walls during eruption
  publication-title: Geol Soc Lond, Spec Publ
– year: 2015
  ident: CR98
  article-title: Brittle versus ductile deformation as the main control of the deep fluid circulation in oceanic crust
  publication-title: Geophys Res Lett
– volume: 117
  start-page: 69
  year: 2002
  end-page: 78
  ident: CR71
  article-title: Persistent summit subsidence at Volcan de Colima, Mexico, 1982–1999: strong evidence against Mogi deflation
  publication-title: J Volcanol Geotherm Res
– volume: 503
  start-page: 52
  year: 2011
  end-page: 59
  ident: CR72
  article-title: Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure
  publication-title: Tectonophysics
– volume: 67
  start-page: 75
  year: 2014
  end-page: 93
  ident: CR17
  article-title: The effects of rock heterogeneity on compaction localization in porous carbonates
  publication-title: J Struct Geol
– volume: 370
  start-page: 641
  year: 1994
  end-page: 644
  ident: CR106
  article-title: Transitions between explosive and effusive eruptions of silicic magmas
  publication-title: Nature
– volume: 306
  start-page: 1543
  year: 2004
  end-page: 1547
  ident: CR31
  article-title: Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool
  publication-title: Science
– year: 2014
  ident: CR73
  article-title: Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska)
  publication-title: Geology
– ident: CR111
– start-page: 263
  year: 2003
  end-page: 280
  ident: CR96
  article-title: Degassing processes of Popocatépetl and Volcán de Colima, Mexico
  publication-title: Volcanic degassing
– ident: CR58
– volume: 102
  start-page: 3009
  issue: B2
  year: 1997
  end-page: 3025
  ident: CR105
  article-title: The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation
  publication-title: J Geophys Res
– volume: 33
  start-page: 243
  year: 1983
  end-page: 273
  ident: CR100
  article-title: Nature and mechanics of the Mount St. Helens rockslide avalanche of 18 May
  publication-title: Geotechnique
– volume: 255
  start-page: 12
  year: 2013
  end-page: 25
  ident: CR1
  article-title: Deformation modes in an Icelandic basalt: from brittle failure to localized deformation bands
  publication-title: J Volcanol Geotherm Res
– volume: 42
  start-page: 873
  year: 2005
  end-page: 889
  ident: CR29
  article-title: Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone
  publication-title: Int J Rock Mech Min Sci
– volume: 62
  start-page: 331
  year: 2000
  end-page: 346
  ident: CR52
  article-title: Volcano instability induced by strike-slip faulting
  publication-title: Bull Volcanol
– volume: 243–244
  start-page: 1
  year: 2012
  end-page: 13
  ident: CR18
  article-title: Gas storage, transport and pressure changes in an evolving permeable volcanic edifice
  publication-title: J Volcanol Geotherm Res
– volume: 25
  start-page: 199
  year: 1997
  end-page: 214
  ident: CR109
  article-title: Shear-enhanced compaction and permeability reduction: triaxial extension tests on porous sandstone
  publication-title: Mech Mater
– year: 2012
  ident: CR7
  article-title: Permeability evolution during triaxial compaction of an anisotropic porous sandstone
  publication-title: J Geophys Res
– volume: 5
  start-page: 25
  year: 2014
  end-page: 44
  ident: CR37
  article-title: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling
  publication-title: Solid Earth
– volume: 1
  start-page: 137
  year: 1965
  end-page: 155
  ident: CR42
  article-title: Brittle fracture propagation in rock under compression
  publication-title: Int J Fract
– volume: 36
  start-page: 399
  year: 2008
  end-page: 402
  ident: CR68
  article-title: Permeability control on magma fragmentation
  publication-title: Geology
– volume: 25
  start-page: 59
  year: 2003
  end-page: 78
  ident: CR103
  article-title: Internal structure and permeability of major strike-slip fault zones: the median tectonic line in Mie Prefecture, southwest Japan
  publication-title: J Struct Geol
– volume: 3
  start-page: 191
  year: 2012
  end-page: 198
  ident: CR50
  article-title: Strength and permeability recovery of tuffisite-bearing andesite
  publication-title: Solid Earth
– volume: 44
  start-page: 25
  year: 2012
  end-page: 53
  ident: CR104
  article-title: The brittle-ductile transition in rocks: a review
  publication-title: J Struct Geol
– volume: 122
  start-page: 381
  issue: 3-4
  year: 1986
  end-page: 387
  ident: CR81
  article-title: On the nomenclature of mode of failure transitions in rocks
  publication-title: Tectonophysics
– volume: 7
  start-page: 1077
  year: 2015
  end-page: 1095
  ident: CR8
  article-title: Revisiting the statistical analysis of pyroclast density and porosity data
  publication-title: Solid Earth Discuss
– volume: 108
  start-page: 245
  year: 2001
  end-page: 264
  ident: CR91
  article-title: Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas–atmosphere interaction
  publication-title: J Volcanol Geotherm Res
– volume: 99
  start-page: 17791
  year: 1994
  end-page: 17804
  ident: CR10
  article-title: Dynamic basis of volcanic spreading
  publication-title: J Geophys Res
– volume: 177
  start-page: 911
  year: 2008
  end-page: 924
  ident: CR89
  article-title: Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006-2007
  publication-title: J Volcanol Geotherm Res
– ident: CR64
– ident: CR99
– volume: 77
  start-page: 34
  year: 2015
  ident: CR84
  article-title: Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)
  publication-title: Bull Volcanol
– volume: 267
  start-page: 209
  year: 1996
  end-page: 228
  ident: CR67
  article-title: Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone
  publication-title: Tectonophysics
– volume: 260
  start-page: 117
  year: 2013
  end-page: 126
  ident: CR48
  article-title: Tracking the permeable porous network during strain-dependent magmatic flow
  publication-title: J Volcanol Geotherm Res
– year: 2014
  ident: CR30
  article-title: Pathways for degassing during the lava dome eruption of Mount St. Helens 2004–2008
  publication-title: Geology
– volume: 110
  start-page: 95
  year: 1996
  end-page: 110
  ident: CR94
  article-title: The role of basement in volcano deformation
  publication-title: Geol Soc Lond Spec Publ
– volume: 339–340
  start-page: 24
  year: 2012
  end-page: 31
  ident: CR66
  article-title: Towards quantifying the matrix permeability of fault damage zones in low porosity rocks
  publication-title: Earth Planet Sci Lett
– ident: CR82
– volume: 245
  start-page: 205
  year: 1995
  end-page: 221
  ident: CR3
  article-title: Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, I. Elastic-wave propagation measurements on dry rocks
  publication-title: Tectonophysics
– volume: 91
  start-page: 1
  year: 1999
  end-page: 21
  ident: CR36
  article-title: Tungurahua Volcano, Ecuador: structure, eruptive history and hazards
  publication-title: J Volcanol Geotherm Res
– volume: 117
  start-page: 169
  issue: 1-2
  year: 2002
  end-page: 194
  ident: CR61
  article-title: Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcán de Colima, México: implications for the end of the current eruptive cycle
  publication-title: J Volcanol Geotherm Res
– volume: 76
  start-page: 856
  year: 2014
  ident: CR39
  article-title: The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magmas
  publication-title: Bull Volcanol
– volume: 74
  start-page: 249
  year: 2012
  end-page: 260
  ident: CR54
  article-title: Magmatic architecture of dome-building eruptions at Volcán de Colima, Mexico
  publication-title: Bull Volcanol
– volume: 110
  start-page: 1
  year: 1996
  end-page: 23
  ident: CR62
  article-title: Volcano instability: a review of contemporary themes
  publication-title: Geol Soc Lond
– volume: 102
  start-page: 3027
  issue: B2
  year: 1997
  end-page: 3041
  ident: CR108
  article-title: The transition from brittle faulting to cataclastic flow: permeability evolution
  publication-title: J Geophys Res
– volume: 120
  start-page: 1559
  year: 2015
  end-page: 1571
  ident: CR107
  article-title: Shallow crustal mechanics from volumetric strain data: insights from Soufrière Hills Volcano, Montserrat
  publication-title: J Geophys Res
– volume: 464
  start-page: 249
  year: 2010
  end-page: 264
  ident: CR20
  article-title: Geologic mapping of the Colima volcanic complex (Mexico) and implications for hazard assessment
  publication-title: Geol Soc Am Spec Pap
– volume: 75
  start-page: 696
  year: 2013
  ident: CR43
  article-title: The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes
  publication-title: Bull Volcanol
– volume: 64
  start-page: 349
  year: 2002
  end-page: 355
  ident: CR113
  article-title: Seismotectonic deformation of the volcanic edifice prior to the 1998 lava eruption of Volcán de Colima, México
  publication-title: Bull Volcanol
– volume: 79
  start-page: 1
  year: 2006
  end-page: 31
  ident: CR33
  article-title: How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes
  publication-title: Earth Sci Rev
– volume: 177
  start-page: 309
  year: 2009
  end-page: 318
  ident: CR19
  article-title: Two-dimensional gas loss for silicic magma flows: toward more realistic numerical models
  publication-title: Geophys J Int
– volume: 78
  start-page: 5922
  year: 1973
  end-page: 5941
  ident: CR85
  article-title: Stress-strain behavior of a granodiorite and two graywackes on compression to 20 kilobars
  publication-title: J Geophys Res
– volume: 323
  start-page: 598
  year: 1986
  end-page: 602
  ident: CR24
  article-title: Non-explosive silicic volcanism
  publication-title: Nature
– volume: 42
  start-page: 843
  year: 2014
  end-page: 846
  ident: CR75
  article-title: Permeability reduction of fractured rhyolite in volcanic conduits and its control on eruption cyclicity
  publication-title: Geology
– ident: CR59
– volume: 116
  start-page: 151
  year: 2002
  end-page: 160
  ident: CR47
  article-title: Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis
  publication-title: J Volcanol Geotherm Res
– volume: 26
  start-page: 603
  year: 2004
  end-page: 624
  ident: CR5
  article-title: Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity
  publication-title: J Struct Geol
– volume: 174
  start-page: 241
  year: 2008
  end-page: 256
  ident: CR83
  article-title: Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005
  publication-title: J Volcanol Geotherm Res
– volume: 42
  start-page: 873
  year: 2005
  ident: 938_CR29
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2005.05.002
– volume: 42
  start-page: 843
  year: 2014
  ident: 938_CR75
  publication-title: Geology
  doi: 10.1130/G35855.1
– volume: 243–244
  start-page: 1
  year: 2012
  ident: 938_CR18
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2012.06.027
– volume: 63
  start-page: 50
  year: 2014
  ident: 938_CR27
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2014.02.008
– volume: 62
  start-page: 331
  year: 2000
  ident: 938_CR52
  publication-title: Bull Volcanol
  doi: 10.1007/s004450000103
– volume: 105
  start-page: 19289
  issue: B8
  year: 2000
  ident: 938_CR4
  publication-title: J Geophys Res
  doi: 10.1029/2000JB900133
– volume: 86
  start-page: 863
  year: 2002
  ident: 938_CR87
  publication-title: AAPG Bull
– volume: 503
  start-page: 52
  year: 2011
  ident: 938_CR72
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2010.09.027
– volume: 73
  start-page: 1417
  year: 1968
  ident: 938_CR86
  publication-title: J Geophys Res
  doi: 10.1029/JB073i004p01417
– volume: 370
  start-page: 641
  year: 1994
  ident: 938_CR106
  publication-title: Nature
  doi: 10.1038/370641a0
– volume: 1
  start-page: 137
  year: 1965
  ident: 938_CR42
  publication-title: Int J Fract
  doi: 10.1007/BF00186851
– volume: 297
  start-page: 52
  year: 2015
  ident: 938_CR26
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2015.03.016
– volume: 145
  start-page: 73
  year: 1998
  ident: 938_CR46
  publication-title: Geol Soc Lond, Spec Publ
  doi: 10.1144/GSL.SP.1996.145.01.05
– volume: 20
  start-page: 299
  year: 1992
  ident: 938_CR90
  publication-title: Geology
  doi: 10.1130/0091-7613(1992)020<0299:GDAFTC>2.3.CO;2
– volume: 387
  start-page: 387
  year: 1997
  ident: 938_CR95
  publication-title: Nature
  doi: 10.1038/387387a0
– ident: 938_CR6
  doi: 10.1029/2005JB004101
– volume-title: Rock fractures in geological processes
  year: 2011
  ident: 938_CR34
  doi: 10.1017/CBO9780511975684
– volume: 32
  start-page: 349
  year: 2004
  ident: 938_CR80
  publication-title: Geology
  doi: 10.1130/G20388.2
– volume: 67
  start-page: 75
  year: 2014
  ident: 938_CR17
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2014.07.008
– volume: 7
  start-page: 1077
  year: 2015
  ident: 938_CR8
  publication-title: Solid Earth Discuss
  doi: 10.5194/sed-7-1077-2015
– ident: 938_CR82
– volume: 119
  start-page: 4360
  year: 2014
  ident: 938_CR57
  publication-title: J Geophys Res
  doi: 10.1002/2013JB010884
– volume: 77
  start-page: 34
  year: 2015
  ident: 938_CR84
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-015-0925-z
– volume: 44
  start-page: 25
  year: 2012
  ident: 938_CR104
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2012.07.010
– year: 2012
  ident: 938_CR7
  publication-title: J Geophys Res
– volume: 267
  start-page: 209
  year: 1996
  ident: 938_CR67
  publication-title: Tectonophysics
  doi: 10.1016/S0040-1951(96)00098-4
– volume: 74
  start-page: 249
  year: 2012
  ident: 938_CR54
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-011-0518-4
– volume: 405
  start-page: 52
  year: 2014
  ident: 938_CR15
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2014.08.012
– volume: 110
  start-page: 95
  year: 1996
  ident: 938_CR94
  publication-title: Geol Soc Lond Spec Publ
  doi: 10.1144/GSL.SP.1996.110.01.07
– volume: 177
  start-page: 309
  year: 2009
  ident: 938_CR19
  publication-title: Geophys J Int
  doi: 10.1111/j.1365-246X.2008.04086.x
– volume: 113
  start-page: B11
  year: 2008
  ident: 938_CR65
  publication-title: J Geophys Res
– volume: 36
  start-page: 399
  year: 2008
  ident: 938_CR68
  publication-title: Geology
  doi: 10.1130/G24605A.1
– volume: 307
  start-page: 191
  year: 2011
  ident: 938_CR88
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2011.04.044
– ident: 938_CR99
– volume: 108
  start-page: B7
  year: 2003
  ident: 938_CR74
  publication-title: J Geophys Res
  doi: 10.1029/2002JB001854
– volume: 25
  start-page: 59
  year: 2003
  ident: 938_CR103
  publication-title: J Struct Geol
  doi: 10.1016/S0191-8141(02)00014-7
– volume: 4
  start-page: 201
  year: 2013
  ident: 938_CR70
  publication-title: Solid Earth
  doi: 10.5194/se-4-201-2013
– volume: 29
  start-page: 503
  year: 2001
  ident: 938_CR28
  publication-title: Geology
  doi: 10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2
– volume: 28
  start-page: 539
  year: 2000
  ident: 938_CR12
  publication-title: Annu Rev Earth Planet Sci
  doi: 10.1146/annurev.earth.28.1.539
– volume: 143
  start-page: 425
  year: 1994
  ident: 938_CR22
  publication-title: Pure Appl Geophys
  doi: 10.1007/BF00874337
– volume: 350
  start-page: 39
  year: 1991
  ident: 938_CR60
  publication-title: Nature
  doi: 10.1038/350039a0
– volume: 245
  start-page: 223
  year: 1995
  ident: 938_CR78
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(94)00236-3
– ident: 938_CR58
  doi: 10.1029/2012GL053218
– year: 2010
  ident: 938_CR110
  publication-title: J Geophys Res
– volume: 278–279
  start-page: 132
  year: 2014
  ident: 938_CR102
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2014.03.013
– volume: 91
  start-page: 1
  year: 1999
  ident: 938_CR36
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(99)00047-5
– volume: 255
  start-page: 12
  year: 2013
  ident: 938_CR1
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2013.01.011
– volume: 203
  start-page: 168
  year: 2011
  ident: 938_CR69
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2011.04.006
– year: 2014
  ident: 938_CR73
  publication-title: Geology
– volume: 117
  start-page: 169
  issue: 1-2
  year: 2002
  ident: 938_CR61
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(02)00243-3
– volume: 71
  start-page: 3939
  year: 1966
  ident: 938_CR13
  publication-title: J Geophys Res
  doi: 10.1029/JZ071i016p03939
– volume: 117
  start-page: 69
  year: 2002
  ident: 938_CR71
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(02)00236-6
– volume: 306
  start-page: 1543
  year: 2004
  ident: 938_CR31
  publication-title: Science
  doi: 10.1126/science.1103445
– volume: 64
  start-page: 349
  year: 2002
  ident: 938_CR113
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-002-0218-1
– volume: 63
  start-page: 112
  year: 2001
  ident: 938_CR93
  publication-title: Bull Volcanol
  doi: 10.1007/s004450100129
– volume: 284
  start-page: 106
  year: 2014
  ident: 938_CR53
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2014.07.013
– volume: 37
  start-page: 21
  year: 2010
  ident: 938_CR9
  publication-title: Geophys Res Lett
– volume: 117
  start-page: 105
  year: 2002
  ident: 938_CR92
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(02)00239-1
– volume: 110
  start-page: 1
  year: 1996
  ident: 938_CR62
  publication-title: Geol Soc Lond
  doi: 10.1144/GSL.SP.1996.110.01.01
– ident: 938_CR63
  doi: 10.1144/GSL.MEM.2002.021.01.07
– ident: 938_CR111
  doi: 10.1029/2010JB008046
– ident: 938_CR41
  doi: 10.1029/JB093iB05p04335
– volume: 99
  start-page: 17791
  year: 1994
  ident: 938_CR10
  publication-title: J Geophys Res
  doi: 10.1029/94JB00578
– volume: 5
  start-page: 25
  year: 2014
  ident: 938_CR37
  publication-title: Solid Earth
  doi: 10.5194/se-5-25-2014
– year: 2015
  ident: 938_CR98
  publication-title: Geophys Res Lett
– volume: 41
  start-page: 515
  year: 2013
  ident: 938_CR55
  publication-title: Geology
  doi: 10.1130/G33948.1
– volume-title: Remote sensing of volcanoes & volcanic processes: integrating observation & modelling
  year: 2013
  ident: 938_CR44
– volume: 245
  start-page: 205
  year: 1995
  ident: 938_CR3
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(94)00235-2
– volume: 26
  start-page: 79
  year: 1998
  ident: 938_CR23
  publication-title: Geology
  doi: 10.1130/0091-7613(1998)026<0079:EOTIPD>2.3.CO;2
– ident: 938_CR25
  doi: 10.1029/GM056p0001
– volume: 122
  start-page: 381
  issue: 3-4
  year: 1986
  ident: 938_CR81
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(86)90153-8
– ident: 938_CR101
  doi: 10.1029/2006JB004501
– start-page: 263
  volume-title: Volcanic degassing
  year: 2003
  ident: 938_CR96
– volume-title: Experimental rock deformation—the brittle field
  year: 2005
  ident: 938_CR76
– volume: 339–340
  start-page: 24
  year: 2012
  ident: 938_CR66
  publication-title: Earth Planet Sci Lett
  doi: 10.1016/j.epsl.2012.05.014
– volume: 33
  start-page: 243
  year: 1983
  ident: 938_CR100
  publication-title: Geotechnique
  doi: 10.1680/geot.1983.33.3.243
– volume: 21
  start-page: 1
  year: 1984
  ident: 938_CR35
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/0377-0273(84)90013-1
– volume: 39
  start-page: 22
  year: 2012
  ident: 938_CR45
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054245
– volume: 119
  start-page: 2925
  year: 2014
  ident: 938_CR38
  publication-title: J Geophys Res
  doi: 10.1002/2013JB010521
– volume: 174
  start-page: 241
  year: 2008
  ident: 938_CR83
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2008.02.007
– volume: 323
  start-page: 598
  year: 1986
  ident: 938_CR24
  publication-title: Nature
  doi: 10.1038/323598a0
– volume: 3
  start-page: 191
  year: 2012
  ident: 938_CR50
  publication-title: Solid Earth
  doi: 10.5194/se-3-191-2012
– volume: 75
  start-page: 696
  year: 2013
  ident: 938_CR43
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-013-0696-3
– volume: 52
  start-page: 17
  year: 2013
  ident: 938_CR14
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2013.03.007
– volume: 464
  start-page: 249
  year: 2010
  ident: 938_CR20
  publication-title: Geol Soc Am Spec Pap
  doi: 10.1130/2010.2464(12)
– volume: 205
  start-page: 30
  year: 2011
  ident: 938_CR2
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2011.02.009
– volume: 26
  start-page: 603
  year: 2004
  ident: 938_CR5
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2003.09.002
– ident: 938_CR59
  doi: 10.1016/0148-9062(93)90041-B
– volume: 177
  start-page: 911
  year: 2008
  ident: 938_CR89
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2008.07.003
– ident: 938_CR16
  doi: 10.1029/2012GL053739
– volume: 141
  start-page: 65
  year: 2005
  ident: 938_CR51
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2004.09.005
– volume: 40
  start-page: 847
  year: 2003
  ident: 938_CR21
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(03)00053-4
– volume: 76
  start-page: 856
  year: 2014
  ident: 938_CR39
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-014-0856-0
– volume: 295
  start-page: 26
  year: 2015
  ident: 938_CR40
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2015.02.012
– volume: 200
  start-page: 49
  year: 2011
  ident: 938_CR77
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2010.12.002
– volume: 79
  start-page: 1
  year: 2006
  ident: 938_CR33
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2006.06.006
– volume-title: Volcán de Colima: managing the threat
  year: 2015
  ident: 938_CR56
– volume: 102
  start-page: 3027
  issue: B2
  year: 1997
  ident: 938_CR108
  publication-title: J Geophys Res
  doi: 10.1029/96JB03282
– ident: 938_CR64
  doi: 10.1016/0191-8141(95)00076-P
– volume: 25
  start-page: 199
  year: 1997
  ident: 938_CR109
  publication-title: Mech Mater
  doi: 10.1016/S0167-6636(97)00011-2
– volume: 94
  start-page: 2366
  year: 2004
  ident: 938_CR79
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120030259
– volume: 72
  start-page: 1093
  year: 2010
  ident: 938_CR97
  publication-title: Bull Volcanol
  doi: 10.1007/s00445-010-0390-7
– volume: 94
  start-page: 995
  year: 2009
  ident: 938_CR49
  publication-title: Am Mineral
  doi: 10.2138/am.2009.3129
– volume: 175
  start-page: 45
  year: 2008
  ident: 938_CR32
  publication-title: Journal of Volcanology and Geothermal Research
  doi: 10.1016/j.jvolgeores.2008.03.041
– volume: 78
  start-page: 5922
  year: 1973
  ident: 938_CR85
  publication-title: J Geophys Res
  doi: 10.1029/JB078i026p05922
– year: 2014
  ident: 938_CR30
  publication-title: Geology
– volume: 80
  start-page: 752
  year: 1975
  ident: 938_CR112
  publication-title: J Geophys Res
  doi: 10.1029/JB080i005p00752
– volume: 2
  start-page: 208
  year: 1990
  ident: 938_CR11
  publication-title: Lava Flows Domes, IAVCEI Proc Volcanol
  doi: 10.1007/978-3-642-74379-5_9
– volume: 260
  start-page: 117
  year: 2013
  ident: 938_CR48
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/j.jvolgeores.2013.05.012
– volume: 108
  start-page: 245
  year: 2001
  ident: 938_CR91
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(00)00289-4
– volume: 102
  start-page: 3009
  issue: B2
  year: 1997
  ident: 938_CR105
  publication-title: J Geophys Res
  doi: 10.1029/96JB03281
– volume: 120
  start-page: 1559
  year: 2015
  ident: 938_CR107
  publication-title: J Geophys Res
  doi: 10.1002/2014JB011551
– volume: 116
  start-page: 151
  year: 2002
  ident: 938_CR47
  publication-title: J Volcanol Geotherm Res
  doi: 10.1016/S0377-0273(02)00216-0
– reference: 15567860 - Science. 2004 Nov 26;306(5701):1543-7
SSID ssj0014367
Score 2.412198
Snippet The failure mode of lava—dilatant or compactant—depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under...
The failure mode of lava-dilatant or compactant-depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions under...
The failure mode of lava--dilatant or compactant--depends on the physical attributes of the lava, primarily the porosity and pore size, and the conditions...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Compaction
Deformation
Earth and Environmental Science
Earth Sciences
Fractures
Geology
Geophysics
Geophysics/Geodesy
Lava
Mechanics
Mechanics of materials
Mineralogy
Permeability
Physical properties
Physics
Pore size
Porosity
Research Article
Rocks
Sciences of the Universe
Sedimentology
Volcanoes
Volcanology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkhcUHmHFmQQJ1BE1nZi-1QV1GWFoEKISr1FfqorVdnS7lbqv--MNxtYKvaQS-wkznhe9oy_AXjXVMY22vrSalmX6P-r0hmCx3OJx8r5xgg67_z9uJmcyK-n9Wm_4XbVp1WudGJW1GHmaY_846jRSqLt5Org4ndJVaMoutqX0NiCHVTBGhdfO5-Ojn_8HOIIUuQasmjYdalNNcQ1qyWMqKTENbwMSr1as0xbZ5QXedfpvJs7-U8ANdul8S487B1KdrjkgEdwL3aP4f6XXLD35gmYMR2DWlxGZrvAcsZ5PsnAZonuUFWAyKYdswz1FJJ56hmas4Tq4ymcjI9-fZ6UfbmE0uKqZF4ma4VJKqDBiU3wiWvXcC-TVtqblGqHqiTJkQ11qCOPHmUxce60d8rTaR3xDLa7WRdfALNRGB_RdgseZBDSBmWcElGj-NIapIBqRarW91jiVNLivB1QkDN1W6RuS9RtVQHvh0culkAamzq_RfoP_QgCe3L4raV7GbOuFtX1qID91fS0veBdtX_YpIA3QzOKDMVBbBdnC-xDdRzQszV6Qx9cdqFnqA1-5vlyxofhEMQ9vgNb1BovrI13vaWbnmXobokOKnpMBXxYcc1fQ_8fNV5u_tE9eMAzF9PW0D5szy8X8RV6SnP3uheHW_spDYU
  priority: 102
  providerName: ProQuest
Title Fracture and compaction of andesite in a volcanic edifice
URI https://link.springer.com/article/10.1007/s00445-015-0938-7
https://www.ncbi.nlm.nih.gov/pubmed/26321781
https://www.proquest.com/docview/1687497627
https://www.proquest.com/docview/1780519298
https://www.proquest.com/docview/1826623891
https://hal.science/hal-01180530
https://pubmed.ncbi.nlm.nih.gov/PMC4551152
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-WlsFeyr6Xrgve2NOGwZFkS3pMQtKwjzDGAt2TkWSJBoZT2qSw_353im2adivswRissyxOOt1Pvi-A90WmTaGMS40SeYr4X6ZWU3o8G5jPrCs0p3jnr4tivhSfzvKzJo77qvV2b02Scafugt3I9kiOZnhplFLZg8Ocju64iJds1JkOBI9lY1GXq1TprDNl_q2LPWXUOydXyLs486675C2baVRFs8dw1GDIZLSb9CfwwNdP4eFprNH7-xnoGUU-bS99YuoqiU7mMXghWQd6QoUAfLKqE5Pg1oScXbkENVjAHeM5LGfTH5N52lRISA0eRDZpMIbrICvUMb6oXGDKFsyJoKRyOoTc4u4RxNBUeZV75h2KX2DMKmelowAd_gIO6nXtX0FiPNfOo7rmrBIVF6aS2kruFUosHTv6kLWsKl2TPpyqWPwqu8THkbslcrck7payDx-6Vy52uTPuI36H_O_oKOv1fPSlpGcxTV3Os-thH07a6SkbWbsqh4WSAlEVwz7eds0oJWT6MLVfb5GGSjcgmNXqHho8aSEYVBo_83I3491wKKs99oEtcm8t7I13v6Vencds3QIxKYKkPnxsV82Nof-LG8f_Rf0aHrG4qOnn0AkcbC63_g1ipY0dwOFoNh4v6H768_MU7-Pp4tv3AfQmxWQQJecPXdAOEw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnRB7QXwTGGAQvIAiUseJ7QeEBqx0rKsQ2qS9BcextUpTOrYWtH-Kv5E7pwmUib7tIS-2kzjnu_PPuS-AF3miTa6MjY0SWYz4X8alpvR4pecuKW2uU4p33h_nw0Px-Sg7WoNfbSwMuVW2OjEo6mpq6R_5m36upMC9k8t3p99jqhpF1tW2hEbDFnvu4ice2c7f7n7E9X3J-WDn4MMwXlQViA2C91nsjUm1lxXqZZdX1nNV5twKr6Sy2vusRInzom-qrMocdxZZ1nNeKltKS0EtKT53HTZEikeZHmy83xl_-drZLbA1BGjzTMVKJ50dNWnSlgpylMNLo5aRSzvh-jH5YV4GuZd9Nf8x2IZ9cHATbiwALNtuOO4WrLn6Nlz7FAoEX9wBPaCwq_mZY6auWPBwD5ETbOqphaoQODapmWGoF3FZJ5bh9ulRXd2Fwysh5D3o1dPaPQBmXKqtQ6yQ8kpUqTCV1KVMnUJ1QWeeCJKWVIVd5C6nEhonRZd1OVC3QOoWRN1CRvCqu-W0SdyxavBzpH83jlJuD7dHBbWFHHlZmvzoR7DVLk-xEPTz4g9bRvCs60YRJbuLqd10jmOobgQiaa1WjMFjHiJRpfE195sV76ZDKfXxGdgjl3hhab7LPfXkOKQKFwiIEaFF8Lrlmr-m_j9qPFz9oU_h-vBgf1SMdsd7j2CTB46m31Jb0Judzd1jRGmz8slCNBh8u2pp_A2Z40vM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG4EguHFiKicAlbjk2bDXtvdto_k4DwViQ-S8Nb0Z7jE7BG4M_G_d6a3u_FASXi4l-1cr5ntdL7ezHxDyPu61LZW1hdWiaoA_C8Lp5EezyUWS-drzbHe-dtZPTkXXy6qi7bP6U2X7d6FJJc1DcjS1MwPr0I67AvfMA6JSWfw0WCxco1swEUlx2lH9agPIwieW8iCX1eF0mUf1vzXFCuOae0S0yLvYs67qZO34qfZLY2fkictnqRHyw2wTR7F5hnZ_JT79f7eIXqMVVCL60htE2hOOM-FDHSW8Ak2BYh02lBL4ZgCLU89BW-W4PR4Ts7HJz9Gk6LtllBYuJTMi2Qt10kG8DexDj4x5WrmRVJSeZ1S5eAkSWJoQxWqyKIHU0yMOeWd9Fisw1-Q9WbWxF1CbeTaR3DdnAURuLBBaid5VGC9eAUZkLJTlfEtlTh2tPhpehLkrF0D2jWoXSMH5EP_laslj8Z9wu9A_70cMmBPjk4NPsuUdRUvfw0HZK97Paa1uxszrJUUgLAYzPG2HwaLwTCIbeJsATLYxgGArVb3yMCtC4Ch0vAzL5dvvF8OMtzDHDAiV_bCynpXR5rpZWbuFoBPATANyMdu1_y19P9p49WDpN-Qx9-Px-b089nX12SL5f2N_xntkfX59SLuA4Sau4NsJn8A1PcPpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+and+compaction+of+andesite+in+a+volcanic+edifice&rft.jtitle=Bulletin+of+volcanology&rft.au=Heap%2C+MJ&rft.au=Farquharson%2C+JI&rft.au=Baud%2C+P&rft.au=Lavallee%2C+Y&rft.date=2015-06-01&rft.issn=0258-8900&rft.eissn=1432-0819&rft.volume=77&rft.issue=6&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1007%2Fs00445-015-0938-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0258-8900&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0258-8900&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0258-8900&client=summon