Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide−Ethylene Glycol Monolayers
The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide−ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 79; no. 12; pp. 4390 - 4400 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
15.06.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide−ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA−MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s → π* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the “high-density” probe surface than on the “high-efficiency” probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. |
---|---|
AbstractList | The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the ... transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the "high-density" probe surface than on the "high-efficiency" probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.) The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s --> pi* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the "high-density" probe surface than on the "high-efficiency" probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Orientation of the ssDNA probes was determined by near edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s → π * transition) indicate that the immobilized ssDNA molecules reorient towards a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the “high density” probe surface than on the “high efficiency” probe surface. The amount of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to non-specific serum protein adsorption onto the sensing surface. The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s {yields} {pi}* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the 'high-density' probe surface than on the 'high-efficiency' probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N Is arrow right capital pi * transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the "high-density" probe surface than on the "high-efficiency" probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide−ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA−MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s → π* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the “high-density” probe surface than on the “high-efficiency” probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface. |
Author | Castner, David G Gamble, Lara J Lee, Chi-Ying Nguyen, Phuong-Cac T Grainger, David W |
AuthorAffiliation | 3 Departments of Pharmaceutics, University of Utah, Salt Lake City, UT 84112-5820 2 Departments of Bioengineering and Chemical Engineering, Box 351750 University of Washington, Seattle, WA 98195-1750 4 Departments of Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820 5 Departments of Bioengineering, University of Utah, Salt Lake City, UT 84112-5820 1 National ESCA and Surface Analysis Center for Biomedical Problems, Box 351750 University of Washington, Seattle, WA 98195-1750 |
AuthorAffiliation_xml | – name: 1 National ESCA and Surface Analysis Center for Biomedical Problems, Box 351750 University of Washington, Seattle, WA 98195-1750 – name: 4 Departments of Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820 – name: 2 Departments of Bioengineering and Chemical Engineering, Box 351750 University of Washington, Seattle, WA 98195-1750 – name: 5 Departments of Bioengineering, University of Utah, Salt Lake City, UT 84112-5820 – name: 3 Departments of Pharmaceutics, University of Utah, Salt Lake City, UT 84112-5820 |
Author_xml | – sequence: 1 givenname: Chi-Ying surname: Lee fullname: Lee, Chi-Ying – sequence: 2 givenname: Phuong-Cac T surname: Nguyen fullname: Nguyen, Phuong-Cac T – sequence: 3 givenname: David W surname: Grainger fullname: Grainger, David W – sequence: 4 givenname: Lara J surname: Gamble fullname: Gamble, Lara J – sequence: 5 givenname: David G surname: Castner fullname: Castner, David G |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18868255$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17492838$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/930464$$D View this record in Osti.gov |
BookMark | eNqFks1uEzEQgC1URNPCgRdACxJIHJaOvbu2c6mUltKCmhIp4Wx5bW_jsrGD7UUNT8CZR-RJ2ChRws-B01iaT9_8eI7QgfPOIPQUwxsMBJ9IBQyKYlg9QANcEcgp5-QADQCgyAkDOERHMd4BYAyYPkKHmJVDwgs-QLfTFDqVumAy6XT29maUXa3qYLX9JpP1LpsEvzQhWRMz32Rje290dtOp1liVjZTVJ2PZvxdWm5_ff1yk-ao1zmSX7Ur5Nht751u5MiE-Rg8b2UbzZBuP0ad3F7Pzq_z64-X789F1LinBKWdSVlDTBkOFMaFNzbAhtWxUo2tSVrpUJeZa1xoYxbwclryCIa4rolkjNcfFMTrdeJddvTBaGZeCbMUy2IUMK-GlFX9mnJ2LW_9VkApzWkAveL4R-JisiMomo-bKO2dUEsMCSlr2zKttkeC_dCYmsbBRmbaVzvguCgaUAC3pf0ECBQVarNt-8Rd457vg-k0JghnnwDjpodcbSAUfYzDNbiwMYn0IYncIPfvs9z3sye3P98DLLSCjkm0TpFM27jnOKSfVWpRvOBuTud_lZfgsKCtYJWaTqTibfZhNz_BEwN4rVdwP8W-DvwAT1Ng4 |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1007_s00216_023_04540_x crossref_primary_10_1002_ange_201204245 crossref_primary_10_1021_acsnano_5b05546 crossref_primary_10_1039_c0jm04359a crossref_primary_10_1016_j_optcom_2008_11_065 crossref_primary_10_1021_la703854x crossref_primary_10_1016_j_snb_2018_01_014 crossref_primary_10_1021_ac203142n crossref_primary_10_1021_acs_analchem_6b04048 crossref_primary_10_1021_la903699f crossref_primary_10_1021_acs_bioconjchem_8b00733 crossref_primary_10_1021_acs_langmuir_0c00340 crossref_primary_10_1007_s12566_012_0030_0 crossref_primary_10_1016_S1452_3981_23_18410_0 crossref_primary_10_1016_j_jaap_2010_12_002 crossref_primary_10_1021_la1031703 crossref_primary_10_1039_C5RA16204A crossref_primary_10_1016_j_snb_2015_04_133 crossref_primary_10_1557_s43579_021_00020_4 crossref_primary_10_1002_jbm_a_33025 crossref_primary_10_1021_ja100881a crossref_primary_10_1016_j_aca_2012_12_040 crossref_primary_10_1002_anie_201204245 crossref_primary_10_1021_jp801248n crossref_primary_10_1039_c1cp21115c crossref_primary_10_1021_ac902765g crossref_primary_10_1021_la8036567 crossref_primary_10_1116_1_4982169 crossref_primary_10_1002_smll_200900369 crossref_primary_10_1007_s00216_009_2731_y crossref_primary_10_1016_j_snb_2021_129452 crossref_primary_10_1021_la1007389 crossref_primary_10_1021_acsabm_3c00837 crossref_primary_10_1116_1_3456176 crossref_primary_10_3389_fchem_2019_00724 crossref_primary_10_1021_ac901459v crossref_primary_10_1021_ac1000114 crossref_primary_10_1021_ac800566d crossref_primary_10_1021_ac302454j crossref_primary_10_1021_acsami_7b07779 crossref_primary_10_1021_cr900138t crossref_primary_10_1186_1559_4106_8_6 crossref_primary_10_1088_0957_4484_23_23_235503 crossref_primary_10_1021_la800553p crossref_primary_10_1021_jp100860z crossref_primary_10_1016_j_bios_2008_03_012 crossref_primary_10_1093_nar_gks1358 crossref_primary_10_1021_ja3066368 crossref_primary_10_1155_2012_816032 crossref_primary_10_1039_D3CP03851C crossref_primary_10_1016_j_bios_2009_03_015 crossref_primary_10_1039_c1cp20374f crossref_primary_10_1002_anbr_202200133 crossref_primary_10_1021_la101101a crossref_primary_10_1380_ejssnt_2009_777 crossref_primary_10_1016_j_elecom_2010_07_032 crossref_primary_10_1016_j_bioelechem_2012_04_003 crossref_primary_10_1021_jp802453u crossref_primary_10_1016_j_jlumin_2010_03_016 crossref_primary_10_1021_jp411353f crossref_primary_10_3390_bioengineering9090414 crossref_primary_10_1021_ja202631b crossref_primary_10_1016_j_bios_2014_01_019 crossref_primary_10_1039_C3BM60181A crossref_primary_10_1007_s00604_011_0637_9 crossref_primary_10_1007_s10008_016_3220_9 crossref_primary_10_1021_la802228e crossref_primary_10_1021_jp408819k crossref_primary_10_1063_1_3116105 crossref_primary_10_1002_sia_6422 crossref_primary_10_1007_s12668_013_0111_8 crossref_primary_10_1016_j_cplett_2011_07_096 crossref_primary_10_1039_c4an00280f crossref_primary_10_1116_1_5142560 crossref_primary_10_1039_c2cp41186e crossref_primary_10_1021_ac902561w crossref_primary_10_1021_ac100035s crossref_primary_10_1039_C4TB01108B crossref_primary_10_1021_ac200814y crossref_primary_10_1021_jp302381s crossref_primary_10_1016_j_bios_2012_06_021 crossref_primary_10_1016_j_coelec_2019_01_001 crossref_primary_10_1007_s00216_011_4871_0 crossref_primary_10_1038_s41467_019_12616_5 crossref_primary_10_1021_jp1034745 |
Cites_doi | 10.1021/ma951820c 10.1021/la035116y 10.1021/ja9936161 10.1002/polb.1995.090331104 10.1103/PhysRevA.33.1349 10.1021/ja981897r 10.1063/1.1397297 10.1021/jp048250f 10.1021/ja991608e 10.1016/S0731-7085(03)00176-6 10.1080/00032710500371121 10.1007/978-3-662-02853-7 10.1016/j.bios.2004.09.025 10.1021/la960465w 10.1021/ja029450c 10.1002/polb.1995.090331105 10.1021/jp030782t 10.1038/ng1031 10.1021/ja9719586 10.1021/la048509l 10.1016/j.elspec.2006.04.004 10.1006/jcis.2002.8663 10.1021/ja052443e 10.1126/science.1071480 10.1016/j.bioelechem.2004.07.006 10.1038/4475 |
ContentType | Journal Article |
Copyright | Copyright © 2007 American Chemical Society 2007 INIST-CNRS Copyright American Chemical Society Jun 15, 2007 |
Copyright_xml | – notice: Copyright © 2007 American Chemical Society – notice: 2007 INIST-CNRS – notice: Copyright American Chemical Society Jun 15, 2007 |
CorporateAuthor | Brookhaven National Laboratory (BNL) National Synchrotron Light Source |
CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL) National Synchrotron Light Source |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 OTOTI 5PM |
DOI | 10.1021/ac0703395 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 4400 |
ExternalDocumentID | 930464 1290138821 10_1021_ac0703395 17492838 18868255 ark_67375_TPS_BTJTSB1P_0 a508961173 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: EB-001473 – fundername: NIBIB NIH HHS grantid: R01 EB001473 – fundername: NIBIB NIH HHS grantid: P41 EB002027 – fundername: NIBIB NIH HHS grantid: P41 EB002027-22 – fundername: NIBIB NIH HHS grantid: R01 EB001473-04 |
GroupedDBID | - .K2 02 186 1AW 23M 3O- 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AETEA AFEFF AFFNX AFRAH AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 OHM OHT P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UQL VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ ZCG --- -DZ -~X .DC 6J9 6TJ AAHBH ABHFT ABHMW ABJNI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK KZ1 LMP XSW ZCA ~02 .GJ .HR 08R 1WB 2KS 3EH AAUTI ABDEX ABFRP ACKIV ACPVT ACQAM AFDAS AFFDN G8K IQODW MVM NHB OMK RNS UBC UBX VOH XOL YQI YQJ YXE YYP ZE2 ZGI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a621t-7aa50b6f1051126fb71e2bafcfdb245d4c418ddbd0761849485091b52d7fad813 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Tue Sep 17 21:17:59 EDT 2024 Fri May 19 00:36:31 EDT 2023 Sat Oct 26 01:37:48 EDT 2024 Thu Oct 24 22:55:23 EDT 2024 Thu Oct 10 16:51:19 EDT 2024 Thu Sep 26 17:56:07 EDT 2024 Sat Nov 02 12:11:47 EDT 2024 Sun Oct 29 17:06:17 EDT 2023 Wed Oct 30 09:29:43 EDT 2024 Thu Aug 27 13:41:57 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Performance evaluation Monolayer Ethylene glycol Gold Chemical analysis Immobilization X ray spectrometry Secondary ion mass spectrometry Protein Blood Chemical enrichment Surface structure Biological compound Adsorption Efficiency Ionic strength Time of flight method DNA Serum Surface plasmon resonance DNA hybridization Nucleic acid Monitoring |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a621t-7aa50b6f1051126fb71e2bafcfdb245d4c418ddbd0761849485091b52d7fad813 |
Notes | ark:/67375/TPS-BTJTSB1P-0 istex:0ABBC804909823E07F39A9714BAB75C44ECB7A97 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 BNL-81216-2008-JA DE-AC02-98CH10886 Doe - Office Of Science |
OpenAccessLink | https://europepmc.org/articles/pmc2518630?pdf=render |
PMID | 17492838 |
PQID | 217880782 |
PQPubID | 45400 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2518630 osti_scitechconnect_930464 proquest_miscellaneous_70620646 proquest_miscellaneous_20360631 proquest_journals_217880782 crossref_primary_10_1021_ac0703395 pubmed_primary_17492838 pascalfrancis_primary_18868255 istex_primary_ark_67375_TPS_BTJTSB1P_0 acs_journals_10_1021_ac0703395 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2007-06-15 |
PublicationDateYYYYMMDD | 2007-06-15 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2007 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Samant M. G. (ac0703395b00053/ac0703395b00053_1) 1996; 29 He P. A. (ac0703395b00013/ac0703395b00013_1) 2005; 38 Rivas G. A. (ac0703395b00014/ac0703395b00014_1) 2005; 38 Zharnikov M. (ac0703395b00052/ac0703395b00052_1) 2004; 108 Livache T. (ac0703395b00005/ac0703395b00005_1) 2003; 32 Wolf L. K. (ac0703395b00007/ac0703395b00007_1) 2005; 127 Wang Y. Y. (ac0703395b00002/ac0703395b00002_1) 2005; 344 Samuel N. T. (ac0703395b00047/ac0703395b00047_1) 2006; 152 Peterson A. W. (ac0703395b00017/ac0703395b00017_1) 2001; 29 Shumaker-Parry J. S. (ac0703395b00009/ac0703395b00009_1) 2004; 76 Lamartine J. (ac0703395b00001/ac0703395b00001_1) 2006 Hahn S. (ac0703395b00004/ac0703395b00004_1) 2005; 67 Stohr J. (ac0703395b00036/ac0703395b00036_1) 1992 Brockman J. M. (ac0703395b00029/ac0703395b00029_1) 1999; 121 Lee C. Y. (ac0703395b00031/ac0703395b00031_1) 2005; 21 Zwahlen M. (ac0703395b00051/ac0703395b00051_1) 2002; 256 Chrisey L. A. (ac0703395b00030/ac0703395b00030_1) 1996; 24 Wu P. (ac0703395b00023/ac0703395b00023_1) 2006; 21 Lenhart J. L. (ac0703395b00034/ac0703395b00034_1) 2002; 20 Wark A. W. (ac0703395b00010/ac0703395b00010_1) 2005; 77 Morar J. F. (ac0703395b00035/ac0703395b00035_1) 1986; 33 Aqua T. (ac0703395b00018/ac0703395b00018_1) 2003; 19 Vaidya A. A. (ac0703395b00025/ac0703395b00025_1) 2004; 20 Huang E. (ac0703395b00038/ac0703395b00038_1) 2000; 16 Churchill G. A. (ac0703395b00006/ac0703395b00006_1) 2002; 32 Castner D. G. (ac0703395b00040/ac0703395b00040_1) 1996; 12 Lee C.-Y. (ac0703395b00022/ac0703395b00022_1) 2006; 1 Wagner M. S. (ac0703395b00032/ac0703395b00032_1) 2001; 17 ac0703395b00045/ac0703395b00045_1 Levicky R. (ac0703395b00016/ac0703395b00016_1) 1998; 120 Herne T. M. (ac0703395b00015/ac0703395b00015_1) 1997; 119 Letsinger R. L. (ac0703395b00019/ac0703395b00019_1) 1999; 146 Jung L. S. (ac0703395b00037/ac0703395b00037_1) 1998; 14 Wagner M. S. (ac0703395b00043/ac0703395b00043_1) 2004; 76 Strother T. (ac0703395b00028/ac0703395b00028_1) 2000; 122 Shard A. G. (ac0703395b00050/ac0703395b00050_1) 2004; 108 Shen G. (ac0703395b00026/ac0703395b00026_1) 2004; 32 Petrovykh D. Y. (ac0703395b00048/ac0703395b00048_1) 2006; 128 Piliarik M. (ac0703395b00008/ac0703395b00008_1) 2005; 20 Lee C.-Y. (ac0703395b00039/ac0703395b00039_1) 2006; 78 Gong P. (ac0703395b00021/ac0703395b00021_1) 2006; 78 Demers L. M. (ac0703395b00020/ac0703395b00020_1) 2002; 296 Petrovykh D. Y. (ac0703395b00041/ac0703395b00041_1) 2003; 125 Wang Y. Y. (ac0703395b00024/ac0703395b00024_1) 2005; 11 Shen G. (ac0703395b00027/ac0703395b00027_1) 2004 Lazerges M. (ac0703395b00011/ac0703395b00011_1) 2006 ac0703395b00046/ac0703395b00046_1 Debouck C. (ac0703395b00003/ac0703395b00003_1) 1999; 21 May C. J. (ac0703395b00033/ac0703395b00033_1) 2004; 76 Lu H. B. (ac0703395b00044/ac0703395b00044_1) 2000; 16 Crain J. N. (ac0703395b00049/ac0703395b00049_1) 2001; 90 Gong P. (ac0703395b00042/ac0703395b00042_1) 2006; 78 Su X. D. (ac0703395b00012/ac0703395b00012_1) 2005; 21 |
References_xml | – volume: 29 start-page: 8342 year: 1996 ident: ac0703395b00053/ac0703395b00053_1 publication-title: Macromolecules doi: 10.1021/ma951820c contributor: fullname: Samant M. G. – volume: 77 start-page: 3907 year: 2005 ident: ac0703395b00010/ac0703395b00010_1 publication-title: Anal. Chem. contributor: fullname: Wark A. W. – volume: 19 start-page: 10573 year: 2003 ident: ac0703395b00018/ac0703395b00018_1 publication-title: Langmuir doi: 10.1021/la035116y contributor: fullname: Aqua T. – volume: 122 start-page: 1209 year: 2000 ident: ac0703395b00028/ac0703395b00028_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9936161 contributor: fullname: Strother T. – volume: 17 start-page: 4660 year: 2001 ident: ac0703395b00032/ac0703395b00032_1 publication-title: Langmuir contributor: fullname: Wagner M. S. – ident: ac0703395b00046/ac0703395b00046_1 doi: 10.1002/polb.1995.090331104 – volume: 11 start-page: 3978 year: 2005 ident: ac0703395b00024/ac0703395b00024_1 publication-title: Chem.-Eur. J. contributor: fullname: Wang Y. Y. – volume: 33 start-page: 1349 year: 1986 ident: ac0703395b00035/ac0703395b00035_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevA.33.1349 contributor: fullname: Morar J. F. – volume: 20 start-page: 2926 year: 2002 ident: ac0703395b00034/ac0703395b00034_1 publication-title: J. Vac. Sci. Technol., B contributor: fullname: Lenhart J. L. – volume: 120 start-page: 9792 year: 1998 ident: ac0703395b00016/ac0703395b00016_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja981897r contributor: fullname: Levicky R. – volume: 29 start-page: 5168 year: 2001 ident: ac0703395b00017/ac0703395b00017_1 publication-title: Nucleic Acids Res. contributor: fullname: Peterson A. W. – volume: 76 start-page: 1122 year: 2004 ident: ac0703395b00033/ac0703395b00033_1 publication-title: Anal. Chem. contributor: fullname: May C. J. – volume: 21 start-page: 1263 year: 2006 ident: ac0703395b00023/ac0703395b00023_1 publication-title: Biosens. Bioelectron. contributor: fullname: Wu P. – volume: 76 start-page: 1492 year: 2004 ident: ac0703395b00043/ac0703395b00043_1 publication-title: Anal. Chem. contributor: fullname: Wagner M. S. – volume-title: C: Biomimetic Supramol. Syst. year: 2006 ident: ac0703395b00001/ac0703395b00001_1 contributor: fullname: Lamartine J. – volume: 90 start-page: 3295 year: 2001 ident: ac0703395b00049/ac0703395b00049_1 publication-title: J. Appl. Phys. doi: 10.1063/1.1397297 contributor: fullname: Crain J. N. – volume: 108 start-page: 12480 year: 2004 ident: ac0703395b00050/ac0703395b00050_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp048250f contributor: fullname: Shard A. G. – volume: 121 start-page: 8051 year: 1999 ident: ac0703395b00029/ac0703395b00029_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991608e contributor: fullname: Brockman J. M. – volume: 32 start-page: 696 year: 2003 ident: ac0703395b00005/ac0703395b00005_1 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(03)00176-6 contributor: fullname: Livache T. – volume: 21 start-page: 5141 year: 2005 ident: ac0703395b00031/ac0703395b00031_1 publication-title: Langmuir contributor: fullname: Lee C. Y. – volume: 38 start-page: 2703 year: 2005 ident: ac0703395b00014/ac0703395b00014_1 publication-title: Anal. Lett. doi: 10.1080/00032710500371121 contributor: fullname: Rivas G. A. – volume: 32 start-page: 5980 year: 2004 ident: ac0703395b00026/ac0703395b00026_1 publication-title: Nucleic Acids Res. contributor: fullname: Shen G. – volume-title: NEXAFS Spectroscopy year: 1992 ident: ac0703395b00036/ac0703395b00036_1 doi: 10.1007/978-3-662-02853-7 contributor: fullname: Stohr J. – volume-title: Biointerfaces year: 2004 ident: ac0703395b00027/ac0703395b00027_1 contributor: fullname: Shen G. – volume: 20 start-page: 2110 year: 2005 ident: ac0703395b00008/ac0703395b00008_1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2004.09.025 contributor: fullname: Piliarik M. – volume: 12 start-page: 5086 year: 1996 ident: ac0703395b00040/ac0703395b00040_1 publication-title: Langmuir doi: 10.1021/la960465w contributor: fullname: Castner D. G. – volume: 344 start-page: 223 year: 2005 ident: ac0703395b00002/ac0703395b00002_1 publication-title: Anal. Biochem. contributor: fullname: Wang Y. Y. – volume: 24 start-page: 3039 year: 1996 ident: ac0703395b00030/ac0703395b00030_1 publication-title: Nucleic Acids Res. contributor: fullname: Chrisey L. A. – volume: 125 start-page: 5226 year: 2003 ident: ac0703395b00041/ac0703395b00041_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029450c contributor: fullname: Petrovykh D. Y. – ident: ac0703395b00045/ac0703395b00045_1 doi: 10.1002/polb.1995.090331105 – volume: 1 start-page: 92 year: 2006 ident: ac0703395b00022/ac0703395b00022_1 publication-title: Biointerphases contributor: fullname: Lee C.-Y. – volume: 78 start-page: 2351 year: 2006 ident: ac0703395b00042/ac0703395b00042_1 publication-title: Anal. Chem. contributor: fullname: Gong P. – volume: 127 start-page: 17459 year: 2005 ident: ac0703395b00007/ac0703395b00007_1 publication-title: J. Am. Chem. Soc. contributor: fullname: Wolf L. K. – volume: 146 start-page: 362 year: 1999 ident: ac0703395b00019/ac0703395b00019_1 publication-title: J. Phosphorus Sulfur Silicon Relat. Elem. contributor: fullname: Letsinger R. L. – volume: 108 start-page: 863 year: 2004 ident: ac0703395b00052/ac0703395b00052_1 publication-title: J. Phys. Chem. B doi: 10.1021/jp030782t contributor: fullname: Zharnikov M. – volume: 38 start-page: 2623 year: 2005 ident: ac0703395b00013/ac0703395b00013_1 publication-title: Anal. Lett. contributor: fullname: He P. A. – volume: 32 start-page: 495 year: 2002 ident: ac0703395b00006/ac0703395b00006_1 publication-title: Nat. Genet. doi: 10.1038/ng1031 contributor: fullname: Churchill G. A. – volume: 76 start-page: 2082 year: 2004 ident: ac0703395b00009/ac0703395b00009_1 publication-title: Anal. Chem. contributor: fullname: Shumaker-Parry J. S. – volume: 119 start-page: 8920 year: 1997 ident: ac0703395b00015/ac0703395b00015_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9719586 contributor: fullname: Herne T. M. – volume: 20 start-page: 11107 year: 2004 ident: ac0703395b00025/ac0703395b00025_1 publication-title: Langmuir doi: 10.1021/la048509l contributor: fullname: Vaidya A. A. – volume: 152 start-page: 142 year: 2006 ident: ac0703395b00047/ac0703395b00047_1 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2006.04.004 contributor: fullname: Samuel N. T. – volume: 14 start-page: 5648 year: 1998 ident: ac0703395b00037/ac0703395b00037_1 publication-title: Langmuir contributor: fullname: Jung L. S. – volume: 16 start-page: 3280 year: 2000 ident: ac0703395b00038/ac0703395b00038_1 publication-title: Langmuir contributor: fullname: Huang E. – volume: 256 start-page: 267 year: 2002 ident: ac0703395b00051/ac0703395b00051_1 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8663 contributor: fullname: Zwahlen M. – volume: 78 start-page: 3334 year: 2006 ident: ac0703395b00021/ac0703395b00021_1 publication-title: Anal. Chem. contributor: fullname: Gong P. – volume: 128 start-page: 3 year: 2006 ident: ac0703395b00048/ac0703395b00048_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja052443e contributor: fullname: Petrovykh D. Y. – volume-title: Chem year: 2006 ident: ac0703395b00011/ac0703395b00011_1 contributor: fullname: Lazerges M. – volume: 21 start-page: 726 year: 2005 ident: ac0703395b00012/ac0703395b00012_1 publication-title: Biosens. Bioelectron. contributor: fullname: Su X. D. – volume: 296 start-page: 1838 year: 2002 ident: ac0703395b00020/ac0703395b00020_1 publication-title: Science doi: 10.1126/science.1071480 contributor: fullname: Demers L. M. – volume: 78 start-page: 3325 year: 2006 ident: ac0703395b00039/ac0703395b00039_1 publication-title: J. Anal. Chem. contributor: fullname: Lee C.-Y. – volume: 67 start-page: 154 year: 2005 ident: ac0703395b00004/ac0703395b00004_1 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2004.07.006 contributor: fullname: Hahn S. – volume: 16 start-page: 1718 year: 2000 ident: ac0703395b00044/ac0703395b00044_1 publication-title: Langmuir contributor: fullname: Lu H. B. – volume: 21 start-page: 50 year: 1999 ident: ac0703395b00003/ac0703395b00003_1 publication-title: Nat, Genet. doi: 10.1038/4475 contributor: fullname: Debouck C. |
SSID | ssj0011016 |
Score | 2.2622778 |
Snippet | The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide−ethylene glycol disulfide... The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide... |
SourceID | pubmedcentral osti proquest crossref pubmed pascalfrancis istex acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4390 |
SubjectTerms | ABSORPTION ADSORPTION Analytical chemistry BASIC BIOLOGICAL SCIENCES BLOOD SERUM BUFFERS CHEMISTRY Deoxyribonucleic acid DETECTION DISULFIDES DNA DNA - analysis DNA - chemistry DNA HYBRIDIZATION DNA Probes DNA, Single-Stranded - chemistry EFFICIENCY Ethylene Glycol - chemistry Exact sciences and technology FINE STRUCTURE GLYCOLS GOLD Gold - chemistry HYBRIDIZATION Maleimides - chemistry Mass spectrometry MASS SPECTROSCOPY MIXTURES MONITORING national synchrotron light source Nucleic Acid Hybridization ORIENTATION Osmolar Concentration PHYSICS OF ELEMENTARY PARTICLES AND FIELDS PLASMONS POLARIZATION PROBES PROTEINS RESONANCE Spectrometric and optical methods Spectrometry, Mass, Secondary Ion Spectrum Analysis Sulfhydryl Compounds - chemistry Surface chemistry Surface Properties Temperature Time Factors X-RAY PHOTOELECTRON SPECTROSCOPY X-Rays |
Title | Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide−Ethylene Glycol Monolayers |
URI | http://dx.doi.org/10.1021/ac0703395 https://api.istex.fr/ark:/67375/TPS-BTJTSB1P-0/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17492838 https://www.proquest.com/docview/217880782 https://search.proquest.com/docview/20360631 https://search.proquest.com/docview/70620646 https://www.osti.gov/biblio/930464 https://pubmed.ncbi.nlm.nih.gov/PMC2518630 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB6V9gAceBQobqGsAHFzya7XXvuYpi1RpUaRkkq9WfsyRC0OykNq-QWc-Yn8EmacOA9o4eyx1t751vONZ_ZbgPfSOlxntgh50dChTDMdGm9UqBMhlJeOsmjqtugk7XN5ehFfbMC7Oyr4gn_UllAZZfE92BIKFwXxn1ZvUSqg9LM-Fo-qqLV80OqtFHrseC30bNEsXuOHeIhLiToi9RgnpZidZnEb3fyza3IlDJ08hqN6M8-s--TyYDoxB_b739qO_3rDJ_BoTkNZc4abp7Dhy22436pPf9uGhytChc_gc6-SmZ2OPNOlY0edJmvf0F6v-S5O1qV_-iMSZ2XDgp0Nrr1jHZJKHljWtAj4MwxEg68D53_9-HmM4MBg59mnqxvEIcPvCibYxP2fw_nJcb_VDudHNJAz-SRUWscNkxTI0mgvUmEU98LowhbOCBk7aSVPnTOOfpeklRQNEhQTC6cK7VIevYDNclj6l8CkjkzkMuQkvpDCxVpxoyJhU8mtjR0PYB99mM-X2DivqueC54vZC-Bt7d7820yq4zajD5XjFxZ6dEm9bSrO-91eftg_7fcOeTdvBLBLyMiRiJCarqW2IzvJM6okS3yWNbwsx0vTBHNuHGavBtDyiTH7S0neXwTwZnEV3UolGl364RRNkFAgaeR3W6hGIpBGJgHszOC4HFvJDMliGoBaA-rCgJTE16-Ugy-VojiS3DSJGrv_m-I9eFD3S_L4FWwi9vxrJGUTs18tyt8phTDu |
link.rule.ids | 230,315,783,787,888,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5Beyg98ChQ3EK7QoibS9Zee-1jGlpCaaJISaXerH0ZrIKD4kRq-QWc-Yn8Emb8SlIVwdlr73r2W883ntlvCXnDtYF1plOXpR3p8iiWrrJKuDL0PGG5wSgaqy2GYf-Cn10Gl7VMDu6FgUEU8KSiTOIv1QXYO6kRnH4c3CebgQBHiTSoN24zBhiFNqfjYTK1URFavRU9kC7WPNAmGvMavsdTWFFYGCkLsE1aHWpxF-u8XTy54o1OH1XHGpXvURahXB0t5upI_7gl8fh_L_qYPKxJKe1WKHpC7tl8h2z1mrPgdsj2imzhU_J5XIrOLmaWytzQ98Mu7d_gzq96Tycd4R_-GUq10mlKB9m1NXSIwsmZpl0N8B-AW8q-Zcb-_vnrBKACrs_SD19vAJUUvjIQbmMk8IxcnJ5Men23PrABp5bNXSFl0FFhCpwNdyalSjDrKZnq1CiPB4ZrziJjlMGfJ1EpTAN0RQWeEak0EfOfk418mtsXhHLpK9_EwFBsyj0TSMGU8D0dcaZ1YJhDDsB4Sb3giqTMpXssaa3nkNfNLCffK-GOuxq9Lee_bSFnV1jpJoJkMhonx5OzyfiYjZKOQ_YQIAnQEtTW1ViEpOdJjHllDmNZg82yvygKIQKHbvYbHC1HDLFghGL_nkMO26swrZiwkbmdLqAJ0AugkOzvLWAheEAqQ4fsVqhc9i14DNQxcohYw2vbAHXF16_k2ZdSXxwobxT6nb1_mfiQbPUng_Pk_OPw0z550FRSsuAl2QAc2ldA1-bqoFynfwCWATlT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtNAEF1BK3F54FJubqFdIcSbS9Zee-3HNG0IhYZISaW-WXsFq-BUuUgtX8Azn8iXMOPYTlIVwbPX3vXsGe8Zz-xZQt5wbcDPtPOZa0mfJ6n0lVXCl3EQCMsNRtFYbdGPe6f8-Cw6qwJF3AsDg5jCk6ZlEh-9-sK4SmGAvZMaARqm0W2yGQlWpmXbnWGTNcBItD4hDxOqtZLQ6q24Cunp2iq0iQa9hG_yGLwKiyPlFOzjFgdb3MQ8rxdQrqxI3Yfkc_MuZSHK-f58pvb1j2syj___so_Ig4qc0vYCTY_JLVtskbud-ky4LXJ_Rb7wCfkyLMVn5xNLZWHoYb9Ne1e4A6za20kH-Kd_gpKtdOzoSX5pDe2jgHKuaVuDG5zA8pR_z439_fPXEUAGlkBL33-7AnRS-NpA2I0RwVNy2j0adXp-dXADTjGb-ULKqKViB9wNdyg5JZgNlHTaGRXwyHDNWWKMMvgTJSkFaoC2qCgwwkmTsPAZ2SjGhX1BKJehCk0KTMU6HphICqZEGOiEM60jwzyyCwbMKsebZmVOPWBZYz2PvK5nOrtYCHjc1OhtiYGmhZycY8WbiLLRYJgdjI5HwwM2yFoe2UaQZEBPUGNXYzGSnmUp5pc5jGUNOsv-kiSGSBy62amxtBwxxIQJiv4HHtlrrsK0YuJGFnY8hyZAM4BKsr-3EK04AHIZe-T5ApnLvgVPgUImHhFrmG0aoL74-pUi_1rqjAP1TeKwtf0vE--RO4PDbvbpQ__jDrlXF1Sy6CXZABjaV8DaZmq3dNU_dPo7zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+DNA+Hybridization+Properties+of+Mixed+Nucleic+Acid%2FMaleimide%E2%88%92Ethylene+Glycol+Monolayers&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Lee%2C+Chi-Ying&rft.au=Nguyen%2C+Phuong-Cac+T&rft.au=Grainger%2C+David+W&rft.au=Gamble%2C+Lara+J&rft.date=2007-06-15&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=79&rft.issue=12&rft.spage=4390&rft.epage=4400&rft_id=info:doi/10.1021%2Fac0703395&rft.externalDocID=a508961173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |