Density Functional Theory A Practical Introduction

Demonstrates how anyone in math, science, and engineering can master DFT calculationsDensity functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Alth...

Full description

Saved in:
Bibliographic Details
Main Authors Sholl, David, Steckel, Janice A
Format eBook Book
LanguageEnglish
Published Hoboken, N.J Wiley-Interscience 2009
WILEY
Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1. Aufl.
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • 8 Electronic Structure and Magnetic Properties -- 8.1 Electronic Density of States -- 8.2 Local Density of States and Atomic Charges -- 8.3 Magnetism -- Exercises -- Further Reading -- Appendix Calculation Details -- 9 Ab Initio Molecular Dynamics -- 9.1 Classical Molecular Dynamics -- 9.1.1 Molecular Dynamics with Constant Energy -- 9.1.2 Molecular Dynamics in the Canonical Ensemble -- 9.1.3 Practical Aspects of Classical Molecular Dynamics -- 9.2 Ab Initio Molecular Dynamics -- 9.3 Applications of Ab Initio Molecular Dynamics -- 9.3.1 Exploring Structurally Complex Materials: Liquids and Amorphous Phases -- 9.3.2 Exploring Complex Energy Surfaces -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 10 Accuracy and Methods beyond "Standard" Calculations -- 10.1 How Accurate Are DFT Calculations? -- 10.2 Choosing a Functional -- 10.3 Examples of Physical Accuracy -- 10.3.1 Benchmark Calculations for Molecular Systems-Energy and Geometry -- 10.3.2 Benchmark Calculations for Molecular Systems-Vibrational Frequencies -- 10.3.3 Crystal Structures and Cohesive Energies -- 10.3.4 Adsorption Energies and Bond Strengths -- 10.4 DFT+X Methods for Improved Treatment of Electron Correlation -- 10.4.1 Dispersion Interactions and DFT-D -- 10.4.2 Self-Interaction Error, Strongly Correlated Electron Systems, and DFT+U -- 10.5 Larger System Sizes with Linear Scaling Methods and Classical Force Fields -- 10.6 Conclusion -- References -- Further Reading -- Index
  • Intro -- DENSITY FUNCTIONAL THEORY -- CONTENTS -- Preface -- 1 What Is Density Functional Theory? -- 1.1 How to Approach This Book -- 1.2 Examples of DFT in Action -- 1.2.1 Ammonia Synthesis by Heterogeneous Catalysis -- 1.2.2 Embrittlement of Metals by Trace Impurities -- 1.2.3 Materials Properties for Modeling Planetary Formation -- 1.3 The Schrödinger Equation -- 1.4 Density Functional Theory-From Wave Functions to Electron Density -- 1.5 Exchange-Correlation Functional -- 1.6 The Quantum Chemistry Tourist -- 1.6.1 Localized and Spatially Extended Functions -- 1.6.2 Wave-Function-Based Methods -- 1.6.3 Hartree-Fock Method -- 1.6.4 Beyond Hartree-Fock -- 1.7 What Can DFT Not Do? -- 1.8 Density Functional Theory in Other Fields -- 1.9 How to Approach This Book (Revisited) -- References -- Further Reading -- 2 DFT Calculations for Simple Solids -- 2.1 Periodic Structures, Supercells, and Lattice Parameters -- 2.2 Face-Centered Cubic Materials -- 2.3 Hexagonal Close-Packed Materials -- 2.4 Crystal Structure Prediction -- 2.5 Phase Transformations -- Exercises -- Further Reading -- Appendix Calculation Details -- 3 Nuts and Bolts of DFT Calculations -- 3.1 Reciprocal Space and k Points -- 3.1.1 Plane Waves and the Brillouin Zone -- 3.1.2 Integrals in k Space -- 3.1.3 Choosing k Points in the Brillouin Zone -- 3.1.4 Metals-Special Cases in k Space -- 3.1.5 Summary of k Space -- 3.2 Energy Cutoffs -- 3.2.1 Pseudopotentials -- 3.3 Numerical Optimization -- 3.3.1 Optimization in One Dimension -- 3.3.2 Optimization in More than One Dimension -- 3.3.3 What Do I Really Need to Know about Optimization? -- 3.4 DFT Total Energies-An Iterative Optimization Problem -- 3.5 Geometry Optimization -- 3.5.1 Internal Degrees of Freedom -- 3.5.2 Geometry Optimization with Constrained Atoms -- 3.5.3 Optimizing Supercell Volume and Shape -- Exercises -- References
  • Further Reading -- Appendix Calculation Details -- 4 DFT Calculations for Surfaces of Solids -- 4.1 Importance of Surfaces -- 4.2 Periodic Boundary Conditions and Slab Models -- 4.3 Choosing k Points for Surface Calculations -- 4.4 Classification of Surfaces by Miller Indices -- 4.5 Surface Relaxation -- 4.6 Calculation of Surface Energies -- 4.7 Symmetric and Asymmetric Slab Models -- 4.8 Surface Reconstruction -- 4.9 Adsorbates on Surfaces -- 4.9.1 Accuracy of Adsorption Energies -- 4.10 Effects of Surface Coverage -- Exercises -- References -- Further Reading -- Appendix Calculation Details -- 5 DFT Calculations of Vibrational Frequencies -- 5.1 Isolated Molecules -- 5.2 Vibrations of a Collection of Atoms -- 5.3 Molecules on Surfaces -- 5.4 Zero-Point Energies -- 5.5 Phonons and Delocalized Modes -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 6 Calculating Rates of Chemical Processes Using Transition State Theory -- 6.1 One-Dimensional Example -- 6.2 Multidimensional Transition State Theory -- 6.3 Finding Transition States -- 6.3.1 Elastic Band Method -- 6.3.2 Nudged Elastic Band Method -- 6.3.3 Initializing NEB Calculations -- 6.4 Finding the Right Transition States -- 6.5 Connecting Individual Rates to Overall Dynamics -- 6.6 Quantum Effects and Other Complications -- 6.6.1 High Temperatures/Low Barriers -- 6.6.2 Quantum Tunneling -- 6.6.3 Zero-Point Energies -- Exercises -- Reference -- Further Reading -- Appendix Calculation Details -- 7 Equilibrium Phase Diagrams from Ab Initio Thermodynamics -- 7.1 Stability of Bulk Metal Oxides -- 7.1.1 Examples Including Disorder-Configurational Entropy -- 7.2 Stability of Metal and Metal Oxide Surfaces -- 7.3 Multiple Chemical Potentials and Coupled Chemical Reactions -- Exercises -- References -- Further Reading -- Appendix Calculation Details