Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent iron immobilized on organobentonite

Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI partic...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 159; no. 12; pp. 3744 - 3749
Main Authors Li, Yimin, Zhang, Yun, Li, Jianfa, Zheng, Xuming
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution. ► CTMA-Bent as the carrier can prevent NZVI from aggregation. ► CTMA-Bent promoted the mass transfer of PCP from solution to NZVI surface, leading to the enhanced removal efficiency. ► The NZVI/CTMA-Bent composite exhibited good stability and reusability. NZVI immobilized on CTMA-Bent showed enhanced efficiency on removing pentachlorophenol, indicating synergetic effect between NZVI and CTMA-Bent.
AbstractList Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution.
Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution. ► CTMA-Bent as the carrier can prevent NZVI from aggregation. ► CTMA-Bent promoted the mass transfer of PCP from solution to NZVI surface, leading to the enhanced removal efficiency. ► The NZVI/CTMA-Bent composite exhibited good stability and reusability. NZVI immobilized on CTMA-Bent showed enhanced efficiency on removing pentachlorophenol, indicating synergetic effect between NZVI and CTMA-Bent.
Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution.Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This novel composite (NZVI/CTMA-Bent) was characterized by transmission electron microscope and X-ray diffraction. Good dispersion of NZVI particles on the bentonite was observed. Its performance on removing pentachlorophenol (PCP) was investigated by batch experiments. Results showed NZVI/CTMA-Bent could rapidly and completely dechlorinate PCP to phenol with an efficiency of 96.2%. It was higher than the sum (54.5%) of reduction by NZVI (31.5%) and adsorption by CTMA-Bent (23.0%) separately. The kinetic studies indicated the removal rate of PCP was positively related to the adsorption. We proposed that the adsorption of PCP by CTMA-Bent enhanced the mass transfer of PCP from aqueous to iron surface. Besides, NZVI/CTMA-Bent exhibited good stability and reusability, and CTMA-Bent could also reduce the amount of iron ions released into the solution.
Author Li, Yimin
Zheng, Xuming
Li, Jianfa
Zhang, Yun
Author_xml – sequence: 1
  givenname: Yimin
  surname: Li
  fullname: Li, Yimin
  email: liym@usx.edu.cn
  organization: College of Chemistry and Chemical Engineering, Shaoxing University, Huancheng West Road, Shaoxing 312000, PR China
– sequence: 2
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: College of Chemistry and Chemical Engineering, Shaoxing University, Huancheng West Road, Shaoxing 312000, PR China
– sequence: 3
  givenname: Jianfa
  surname: Li
  fullname: Li, Jianfa
  organization: College of Chemistry and Chemical Engineering, Shaoxing University, Huancheng West Road, Shaoxing 312000, PR China
– sequence: 4
  givenname: Xuming
  surname: Zheng
  fullname: Zheng, Xuming
  organization: Department of Chemistry and State Key Laboratory of ATMMT (MOE), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24623311$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21906860$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URD_gHyDwBcElwV-x1z1UQlX5kCo4QM-W1zvbOPLai72J1P56vEoAiUPLxZbHzzszmnlP0VFMERB6ScmSEirfb5YQd2MKS0YoXRK1rMEn6IQ2ii-kYOIInRAm9UIJTY_RaSkbQojgnD9Dx4xqIhtJTtD2Kq5tdNDhDEPa2YBTj0eIk3XrkHIa1xBTwO0dtjimHQTs0jCm4ic4x19tTMXZAPgecsJVXYXY5xSxH4bU-uDva-b6TPm2sm39TrFKn6OnvQ0FXhzuM3Tz8erH5efF9bdPXy4_XC-sJGxadGAtFU3brGRHGO85NH3P25VuiXaiFa3qpSCMWOK0FpY7JohoWAetJarpND9Db_d5x5x-bqFMZvDFQQg2QtoWowmXq0bR_yEZV43kqpLvHiSpUooqokXzOColl_XQc_1XB3TbDtCZMfvB5jvze1MVeHMA7DzyPtet-fKXE5JxTmnlxJ5zOZWSof-DUGJm45iN2RvHzMYxRJkarLLzf2TOT3byKU7Z-vCY-PVe3Ntk7G2ufd18r8CqOo5SyeZJXOwJqNveecimOA-z73wGN5ku-YdL_AKKxepo
CODEN ENVPAF
CitedBy_id crossref_primary_10_1016_j_watres_2013_01_021
crossref_primary_10_1016_j_coche_2017_12_005
crossref_primary_10_1016_j_chemosphere_2018_06_008
crossref_primary_10_1016_j_jcis_2017_02_058
crossref_primary_10_1016_j_cej_2018_02_034
crossref_primary_10_1016_j_cej_2012_11_103
crossref_primary_10_1016_j_jhazmat_2015_05_008
crossref_primary_10_1016_j_jhazmat_2015_07_014
crossref_primary_10_1002_clen_201200641
crossref_primary_10_1016_S1001_0742_13_60419_2
crossref_primary_10_1016_j_jhazmat_2021_125381
crossref_primary_10_1016_j_jpcs_2017_06_018
crossref_primary_10_1016_j_cej_2020_127391
crossref_primary_10_1016_j_jece_2018_10_011
crossref_primary_10_1080_02772248_2014_931960
crossref_primary_10_1021_acs_est_1c05986
crossref_primary_10_1016_j_molcatb_2013_04_003
crossref_primary_10_1080_10584587_2017_1324749
crossref_primary_10_1016_j_apcatb_2015_02_016
crossref_primary_10_1016_j_chemosphere_2020_126496
crossref_primary_10_1016_j_jhazmat_2015_08_059
crossref_primary_10_1515_revce_2022_0037
crossref_primary_10_1007_s11270_014_2293_2
crossref_primary_10_1016_j_colsurfa_2019_124089
crossref_primary_10_1021_acsami_5b11859
crossref_primary_10_1080_09593330_2017_1329350
crossref_primary_10_3390_su9091604
crossref_primary_10_1002_ceat_201900479
crossref_primary_10_1007_s13738_017_1143_8
crossref_primary_10_1016_j_molliq_2013_10_008
crossref_primary_10_1520_JTE20160493
crossref_primary_10_1016_j_cej_2021_133187
crossref_primary_10_1007_s10967_013_2498_7
crossref_primary_10_2166_ws_2018_194
crossref_primary_10_1098_rsos_201192
crossref_primary_10_1021_ie4009524
crossref_primary_10_1016_j_jhazmat_2018_05_067
crossref_primary_10_1016_j_cej_2014_09_038
crossref_primary_10_1039_C6TA05958A
crossref_primary_10_1016_j_sajce_2024_06_001
crossref_primary_10_1016_j_ejbt_2019_02_003
crossref_primary_10_1016_j_scitotenv_2022_154754
crossref_primary_10_1089_ees_2018_0378
crossref_primary_10_1016_j_jclepro_2020_120700
crossref_primary_10_1016_j_seppur_2021_119146
crossref_primary_10_1016_j_molliq_2017_07_048
crossref_primary_10_1016_j_chemosphere_2013_01_030
crossref_primary_10_1021_acs_est_6b01897
crossref_primary_10_1016_j_jhazmat_2012_05_034
crossref_primary_10_3390_su16072728
crossref_primary_10_1016_j_cej_2013_07_018
crossref_primary_10_1039_C7RA13608K
crossref_primary_10_1016_j_jhazmat_2013_07_046
crossref_primary_10_1016_j_jes_2019_02_015
crossref_primary_10_2166_wst_2023_009
crossref_primary_10_1016_j_envres_2024_118312
crossref_primary_10_17221_11_2014_SWR
crossref_primary_10_1002_jctb_6298
crossref_primary_10_1016_j_cej_2013_01_028
crossref_primary_10_1016_j_cej_2016_11_154
crossref_primary_10_1016_j_chemosphere_2021_131018
crossref_primary_10_1016_j_materresbull_2014_09_016
crossref_primary_10_1016_j_jhazmat_2014_08_029
crossref_primary_10_1016_j_jcis_2014_04_014
crossref_primary_10_1021_am300402q
crossref_primary_10_1016_j_jhazmat_2023_133378
crossref_primary_10_1016_j_apcatb_2015_03_025
crossref_primary_10_1002_jctb_4283
crossref_primary_10_1016_j_jallcom_2022_163723
crossref_primary_10_1016_j_jhazmat_2020_124305
crossref_primary_10_1016_j_cej_2016_06_135
crossref_primary_10_1016_j_molliq_2015_03_047
crossref_primary_10_5004_dwt_2018_21910
crossref_primary_10_1016_j_chemosphere_2014_01_076
crossref_primary_10_1016_j_jtice_2012_12_007
crossref_primary_10_1080_19443994_2014_1002430
crossref_primary_10_1021_jp412404w
crossref_primary_10_1155_2021_9340362
crossref_primary_10_1007_s11426_013_4888_7
crossref_primary_10_1016_j_talanta_2017_07_043
crossref_primary_10_1016_j_clay_2015_11_019
crossref_primary_10_2166_ws_2017_003
crossref_primary_10_1016_j_jhazmat_2015_05_032
crossref_primary_10_1016_j_cej_2016_05_062
crossref_primary_10_1007_s10967_013_2598_4
crossref_primary_10_1016_j_nanoso_2020_100442
crossref_primary_10_1016_j_jhazmat_2012_12_023
crossref_primary_10_1021_je400164e
crossref_primary_10_1007_s11356_024_33451_2
crossref_primary_10_1016_j_biortech_2014_07_062
crossref_primary_10_1007_s11356_021_13847_0
crossref_primary_10_1007_s11814_013_0207_4
crossref_primary_10_1016_j_envres_2024_120009
crossref_primary_10_1016_j_envres_2024_119419
crossref_primary_10_1016_j_jhazmat_2013_10_045
crossref_primary_10_1021_am301829u
crossref_primary_10_1016_j_apcatb_2016_04_003
crossref_primary_10_1016_j_cej_2015_02_087
crossref_primary_10_1021_acs_iecr_6b03864
crossref_primary_10_1016_j_watres_2015_02_034
crossref_primary_10_1016_j_cej_2014_03_017
crossref_primary_10_1007_s11814_014_0045_z
crossref_primary_10_3390_w15010183
crossref_primary_10_1016_j_envres_2022_114724
crossref_primary_10_1007_s11356_018_2030_2
crossref_primary_10_1016_j_jhazmat_2019_05_052
crossref_primary_10_1016_j_molliq_2015_04_017
Cites_doi 10.1016/j.jhazmat.2006.10.032
10.1016/j.chemosphere.2007.03.002
10.1021/es00061a012
10.1016/j.watres.2004.09.007
10.1021/es991460z
10.1016/j.chemosphere.2006.06.034
10.1021/jf072530l
10.1021/es061349a
10.1021/nl0518268
10.1021/es702214x
10.1021/es048262e
10.1016/j.clay.2008.07.030
10.1016/j.watres.2005.10.017
10.1021/es060685o
10.1016/j.watres.2006.06.031
10.1016/j.watres.2008.08.005
10.1016/j.jconhyd.2011.03.002
10.1016/j.clay.2007.10.001
10.1016/S0045-6535(02)00815-9
10.1016/j.envpol.2003.10.008
10.1021/es070769c
10.1016/j.chemosphere.2005.07.021
10.1021/es991129f
10.1021/es980554q
10.1016/S0045-6535(00)00564-6
10.1021/es960641n
10.1021/la051714w
10.1016/j.seppur.2009.12.010
10.1021/es010564i
10.1016/j.jhazmat.2007.07.036
10.1021/es990884q
10.1021/es702589u
10.1016/j.jhazmat.2010.03.068
10.1021/es015816u
10.1016/j.chemosphere.2007.09.042
10.1016/j.envpol.2006.05.023
10.1016/j.watres.2009.01.024
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7SU
8FD
C1K
FR3
KR7
7ST
7TV
7U7
SOI
7X8
DOI 10.1016/j.envpol.2011.07.016
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Civil Engineering Abstracts
MEDLINE
Pollution Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
Applied Sciences
Chemistry
EISSN 1873-6424
EndPage 3749
ExternalDocumentID 21906860
24623311
10_1016_j_envpol_2011_07_016
US201500011628
S0269749111003861
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
29G
4.4
457
53G
5GY
5VS
6TJ
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XJT
XOL
XPP
ZMT
~G-
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7SU
8FD
C1K
FR3
KR7
7ST
7TV
7U7
SOI
7X8
ID FETCH-LOGICAL-a602t-deaa148b856d023f3e8ff3b59b09c4b4b7f64020a0c994a3c240482deba078d93
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Thu Jul 10 18:34:00 EDT 2025
Mon Jul 21 10:01:01 EDT 2025
Mon Jul 21 10:29:17 EDT 2025
Thu Jul 10 23:35:52 EDT 2025
Thu Apr 03 07:09:16 EDT 2025
Mon Jul 21 09:14:19 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 00:54:06 EDT 2025
Thu Apr 03 09:45:41 EDT 2025
Fri Feb 23 02:34:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Removal
Immobilization
Organobentonite
Pentachlorophenol
Nanoscale zero valent iron
Organic clay
Adsorption capacity
Zerovalent metal
Iron
Organic chlorine compounds
Composite material
Carcinogen
Decontamination
Phenols
Poison
Water pollution
Organic compounds
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a602t-deaa148b856d023f3e8ff3b59b09c4b4b7f64020a0c994a3c240482deba078d93
Notes http://dx.doi.org/10.1016/j.envpol.2011.07.016
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 21906860
PQID 1663616699
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_903658719
proquest_miscellaneous_902378637
proquest_miscellaneous_1777170948
proquest_miscellaneous_1663616699
pubmed_primary_21906860
pascalfrancis_primary_24623311
crossref_primary_10_1016_j_envpol_2011_07_016
crossref_citationtrail_10_1016_j_envpol_2011_07_016
fao_agris_US201500011628
elsevier_sciencedirect_doi_10_1016_j_envpol_2011_07_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Alessi, Li (bib1) 2001; 35
Wang, Chen, Liu, Ma (bib28) 2008; 42
Matheson, Tratnyek (bib18) 1994; 28
Zhang, Tao, Li, Bowman (bib32) 2002; 36
Zhu, Chen (bib35) 2000; 34
Cheng, Zhou, Wang, Qi, Guo, Zhang, Qian (bib4) 2010; 180
Uzum, Shahwan, Eroglu, Hallam, Scott, Lieberwirth (bib26) 2009; 43
Hu, Li (bib9) 2008; 28
Kim, Carraway (bib11) 2000; 34
Zheng, Zhan, He, Day, Lu, McPerson, Piringer, John (bib34) 2008; 42
Zhao, Zhang, Quan, Chen (bib33) 2010; 71
Wei, Xu, Liu, Wang (bib29) 2006; 40
Oh, Song, Shin, Choi, Kim (bib19) 2007; 66
Xiong, Xu, Zhu, Zhao (bib31) 2005; 21
Deng, Burris, Campbell (bib5) 1999; 33
Jou (bib10) 2008; 152
Zhu, Li, Zhang (bib36) 1997; 31
Shen (bib23) 2001; 44
Graham, Chu, Lau (bib7) 2003; 51
Li, Tai, Zhao, Wang, Zhang, Jiang, Hu (bib13) 2007; 41
Song, Carraway (bib24) 2005; 39
Zimbron, Reardon (bib38) 2009; 43
Saleh, Phenrat, Sirk, Dufour, Ok, Sarbu, Matyjaszewski, Tilton, Lowry (bib22) 2005; 5
Li, Yuan, Wan, Long, Tong (bib15) 2011; 124
Ma, Zhu (bib17) 2007; 68
Vazquez, López, Kortaberria, Martín, Mondragon (bib27) 2008; 41
Zhu, Ruan, Chen, Zhu (bib37) 2008; 70
Liu, Lowry (bib16) 2006; 40
Cheng, Wang, Zhang (bib3) 2007; 144
Quan, Ruan, Zhao, Chen, Zhao (bib21) 2007; 147
Hoch, Mack, Hydutsky, Hershman, Skluzacek, Mallouk (bib8) 2008; 42
Li, Li, Dong (bib14) 2008; 56
Kojima, Fukuta, Yamada, Onyango, Bernardo, Matsuda, Yagishita (bib12) 2005; 39
Sun, Zhang (bib25) 2006; 40
Arnold, Roberts (bib2) 2000; 34
Dombek, Davis, Stine, Klarup (bib6) 2004; 129
Wu, Ritchie (bib30) 2006; 63
Phenrat, Saleh, Sirk, Tilton, Lowry (bib20) 2007; 41
Graham (10.1016/j.envpol.2011.07.016_bib7) 2003; 51
Sun (10.1016/j.envpol.2011.07.016_bib25) 2006; 40
Zheng (10.1016/j.envpol.2011.07.016_bib34) 2008; 42
Jou (10.1016/j.envpol.2011.07.016_bib10) 2008; 152
Li (10.1016/j.envpol.2011.07.016_bib15) 2011; 124
Xiong (10.1016/j.envpol.2011.07.016_bib31) 2005; 21
Hu (10.1016/j.envpol.2011.07.016_bib9) 2008; 28
Song (10.1016/j.envpol.2011.07.016_bib24) 2005; 39
Matheson (10.1016/j.envpol.2011.07.016_bib18) 1994; 28
Li (10.1016/j.envpol.2011.07.016_bib13) 2007; 41
Saleh (10.1016/j.envpol.2011.07.016_bib22) 2005; 5
Kojima (10.1016/j.envpol.2011.07.016_bib12) 2005; 39
Zhu (10.1016/j.envpol.2011.07.016_bib35) 2000; 34
Ma (10.1016/j.envpol.2011.07.016_bib17) 2007; 68
Zhang (10.1016/j.envpol.2011.07.016_bib32) 2002; 36
Dombek (10.1016/j.envpol.2011.07.016_bib6) 2004; 129
Wu (10.1016/j.envpol.2011.07.016_bib30) 2006; 63
Zhu (10.1016/j.envpol.2011.07.016_bib37) 2008; 70
Kim (10.1016/j.envpol.2011.07.016_bib11) 2000; 34
Shen (10.1016/j.envpol.2011.07.016_bib23) 2001; 44
Arnold (10.1016/j.envpol.2011.07.016_bib2) 2000; 34
Deng (10.1016/j.envpol.2011.07.016_bib5) 1999; 33
Li (10.1016/j.envpol.2011.07.016_bib14) 2008; 56
Cheng (10.1016/j.envpol.2011.07.016_bib4) 2010; 180
Liu (10.1016/j.envpol.2011.07.016_bib16) 2006; 40
Oh (10.1016/j.envpol.2011.07.016_bib19) 2007; 66
Wang (10.1016/j.envpol.2011.07.016_bib28) 2008; 42
Uzum (10.1016/j.envpol.2011.07.016_bib26) 2009; 43
Phenrat (10.1016/j.envpol.2011.07.016_bib20) 2007; 41
Quan (10.1016/j.envpol.2011.07.016_bib21) 2007; 147
Zimbron (10.1016/j.envpol.2011.07.016_bib38) 2009; 43
Cheng (10.1016/j.envpol.2011.07.016_bib3) 2007; 144
Vazquez (10.1016/j.envpol.2011.07.016_bib27) 2008; 41
Alessi (10.1016/j.envpol.2011.07.016_bib1) 2001; 35
Wei (10.1016/j.envpol.2011.07.016_bib29) 2006; 40
Zhao (10.1016/j.envpol.2011.07.016_bib33) 2010; 71
Hoch (10.1016/j.envpol.2011.07.016_bib8) 2008; 42
Zhu (10.1016/j.envpol.2011.07.016_bib36) 1997; 31
References_xml – volume: 39
  start-page: 6237
  year: 2005
  end-page: 6245
  ident: bib24
  article-title: Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions
  publication-title: Environmental Science and Technology
– volume: 70
  start-page: 1987
  year: 2008
  end-page: 1994
  ident: bib37
  article-title: Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation
  publication-title: Chemosphere
– volume: 39
  start-page: 29
  year: 2005
  end-page: 36
  ident: bib12
  article-title: Catalytic wet oxidation of
  publication-title: Water Research
– volume: 41
  start-page: 24
  year: 2008
  end-page: 36
  ident: bib27
  article-title: Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination
  publication-title: Applied Clay Science
– volume: 31
  start-page: 1407
  year: 1997
  end-page: 1410
  ident: bib36
  article-title: Sorption of organobentonites to some organic pollutants in water
  publication-title: Environmental Science and Technology
– volume: 56
  start-page: 1336
  year: 2008
  end-page: 1342
  ident: bib14
  article-title: Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations
  publication-title: Journal of Agricultural Food and Chemistry
– volume: 71
  start-page: 302
  year: 2010
  end-page: 307
  ident: bib33
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Separation and Purification Technology
– volume: 68
  start-page: 1883
  year: 2007
  end-page: 1888
  ident: bib17
  article-title: Removal of phenols from water accompanied with synthesis of organobentonite in one-step process
  publication-title: Chemosphere
– volume: 44
  start-page: 989
  year: 2001
  end-page: 995
  ident: bib23
  article-title: Preparations of organobentonite using nonionic surfactants
  publication-title: Chemosphere
– volume: 5
  start-page: 2489
  year: 2005
  end-page: 2494
  ident: bib22
  article-title: Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface
  publication-title: Nano Letters
– volume: 42
  start-page: 2600
  year: 2008
  end-page: 2605
  ident: bib8
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environmental Science and Technology
– volume: 40
  start-page: 6085
  year: 2006
  end-page: 6090
  ident: bib16
  article-title: Effect of particle age (Fe
  publication-title: Environmental Science and Technology
– volume: 63
  start-page: 285
  year: 2006
  end-page: 292
  ident: bib30
  article-title: Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles
  publication-title: Chemosphere
– volume: 42
  start-page: 4656
  year: 2008
  end-page: 4664
  ident: bib28
  article-title: Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid
  publication-title: Water Research
– volume: 33
  start-page: 2651
  year: 1999
  end-page: 2656
  ident: bib5
  article-title: Reductive of vinyl chloride in metallic iron–water systems
  publication-title: Environmental Science and Technology
– volume: 42
  start-page: 4494
  year: 2008
  end-page: 4499
  ident: bib34
  article-title: Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation
  publication-title: Environmental Science and Technology
– volume: 34
  start-page: 2997
  year: 2000
  end-page: 3002
  ident: bib35
  article-title: Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water
  publication-title: Environmental Science and Technology
– volume: 35
  start-page: 3713
  year: 2001
  end-page: 3717
  ident: bib1
  article-title: Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron
  publication-title: Environmental Science and Technology
– volume: 34
  start-page: 2014
  year: 2000
  end-page: 2017
  ident: bib11
  article-title: Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons
  publication-title: Environmental Science and Technology
– volume: 43
  start-page: 1831
  year: 2009
  end-page: 1840
  ident: bib38
  article-title: Fenton’s oxidation of pentachlorophenol
  publication-title: Water Research
– volume: 51
  start-page: 237
  year: 2003
  end-page: 243
  ident: bib7
  article-title: Observations of 2,4,6-trichlorophenol degradation by ozone
  publication-title: Chemosphere
– volume: 66
  start-page: 858
  year: 2007
  end-page: 865
  ident: bib19
  article-title: Effect of amorphous silica and silica sand on removal of chromium (VI) by zero valent iron
  publication-title: Chemosphere
– volume: 40
  start-page: 348
  year: 2006
  end-page: 354
  ident: bib29
  article-title: Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters
  publication-title: Water Research
– volume: 180
  start-page: 79
  year: 2010
  end-page: 85
  ident: bib4
  article-title: Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect
  publication-title: Journal of Hazardous Materials
– volume: 34
  start-page: 1794
  year: 2000
  end-page: 1805
  ident: bib2
  article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles
  publication-title: Environmental Science and Technology
– volume: 21
  start-page: 10602
  year: 2005
  end-page: 10607
  ident: bib31
  article-title: Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite
  publication-title: Langmuir
– volume: 43
  start-page: 172
  year: 2009
  end-page: 181
  ident: bib26
  article-title: Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu
  publication-title: Applied Clay Science
– volume: 124
  start-page: 99
  year: 2011
  end-page: 107
  ident: bib15
  article-title: A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil
  publication-title: Journal of Contaminant Hydrology
– volume: 152
  start-page: 699
  year: 2008
  end-page: 702
  ident: bib10
  article-title: Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy
  publication-title: Journal of Hazardous Materials
– volume: 36
  start-page: 3597
  year: 2002
  end-page: 3603
  ident: bib32
  article-title: Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets
  publication-title: Environmental Science and Technology
– volume: 147
  start-page: 409
  year: 2007
  end-page: 414
  ident: bib21
  article-title: Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO
  publication-title: Environmental Pollution
– volume: 41
  start-page: 284
  year: 2007
  end-page: 290
  ident: bib20
  article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions
  publication-title: Environmental Science and Technology
– volume: 144
  start-page: 334
  year: 2007
  end-page: 339
  ident: bib3
  article-title: Comparison of reductive dechlorination of p-chlorophenol using Fe
  publication-title: Journal of Hazardous Materials
– volume: 40
  start-page: 3069
  year: 2006
  end-page: 3074
  ident: bib25
  article-title: Electrochemical determination of 2-chlorophenol using an acetylene black film modified glassy carbon electrode
  publication-title: Water Research
– volume: 28
  start-page: 2045
  year: 1994
  end-page: 2053
  ident: bib18
  article-title: Reductive dehalogenation of chlorinated methanes by iron metal
  publication-title: Environmental Science and Technology
– volume: 129
  start-page: 267
  year: 2004
  end-page: 275
  ident: bib6
  article-title: Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4, 6-dimethoxy-1,3,5-triazine) by zero valent iron and electrochemical reduction
  publication-title: Environmental Pollution
– volume: 28
  start-page: 1107
  year: 2008
  end-page: 1112
  ident: bib9
  article-title: Removal of nitrobenzene from synthetic wastewater by nanoscale zero-valent iron supported on organobentonite
  publication-title: Acta Scientiae Circumstantiae
– volume: 41
  start-page: 6841
  year: 2007
  end-page: 6846
  ident: bib13
  article-title: Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles
  publication-title: Environmental Science and Technology
– volume: 144
  start-page: 334
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib3
  article-title: Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2006.10.032
– volume: 28
  start-page: 1107
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib9
  article-title: Removal of nitrobenzene from synthetic wastewater by nanoscale zero-valent iron supported on organobentonite
  publication-title: Acta Scientiae Circumstantiae
– volume: 68
  start-page: 1883
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib17
  article-title: Removal of phenols from water accompanied with synthesis of organobentonite in one-step process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.03.002
– volume: 28
  start-page: 2045
  year: 1994
  ident: 10.1016/j.envpol.2011.07.016_bib18
  article-title: Reductive dehalogenation of chlorinated methanes by iron metal
  publication-title: Environmental Science and Technology
  doi: 10.1021/es00061a012
– volume: 39
  start-page: 29
  year: 2005
  ident: 10.1016/j.envpol.2011.07.016_bib12
  article-title: Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions
  publication-title: Water Research
  doi: 10.1016/j.watres.2004.09.007
– volume: 34
  start-page: 2997
  year: 2000
  ident: 10.1016/j.envpol.2011.07.016_bib35
  article-title: Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water
  publication-title: Environmental Science and Technology
  doi: 10.1021/es991460z
– volume: 66
  start-page: 858
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib19
  article-title: Effect of amorphous silica and silica sand on removal of chromium (VI) by zero valent iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.06.034
– volume: 56
  start-page: 1336
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib14
  article-title: Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations
  publication-title: Journal of Agricultural Food and Chemistry
  doi: 10.1021/jf072530l
– volume: 41
  start-page: 284
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib20
  article-title: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions
  publication-title: Environmental Science and Technology
  doi: 10.1021/es061349a
– volume: 5
  start-page: 2489
  year: 2005
  ident: 10.1016/j.envpol.2011.07.016_bib22
  article-title: Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface
  publication-title: Nano Letters
  doi: 10.1021/nl0518268
– volume: 42
  start-page: 4494
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib34
  article-title: Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation
  publication-title: Environmental Science and Technology
  doi: 10.1021/es702214x
– volume: 39
  start-page: 6237
  year: 2005
  ident: 10.1016/j.envpol.2011.07.016_bib24
  article-title: Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions
  publication-title: Environmental Science and Technology
  doi: 10.1021/es048262e
– volume: 43
  start-page: 172
  year: 2009
  ident: 10.1016/j.envpol.2011.07.016_bib26
  article-title: Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions
  publication-title: Applied Clay Science
  doi: 10.1016/j.clay.2008.07.030
– volume: 40
  start-page: 348
  year: 2006
  ident: 10.1016/j.envpol.2011.07.016_bib29
  article-title: Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters
  publication-title: Water Research
  doi: 10.1016/j.watres.2005.10.017
– volume: 40
  start-page: 6085
  year: 2006
  ident: 10.1016/j.envpol.2011.07.016_bib16
  article-title: Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination
  publication-title: Environmental Science and Technology
  doi: 10.1021/es060685o
– volume: 40
  start-page: 3069
  year: 2006
  ident: 10.1016/j.envpol.2011.07.016_bib25
  article-title: Electrochemical determination of 2-chlorophenol using an acetylene black film modified glassy carbon electrode
  publication-title: Water Research
  doi: 10.1016/j.watres.2006.06.031
– volume: 42
  start-page: 4656
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib28
  article-title: Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid
  publication-title: Water Research
  doi: 10.1016/j.watres.2008.08.005
– volume: 124
  start-page: 99
  year: 2011
  ident: 10.1016/j.envpol.2011.07.016_bib15
  article-title: A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil
  publication-title: Journal of Contaminant Hydrology
  doi: 10.1016/j.jconhyd.2011.03.002
– volume: 41
  start-page: 24
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib27
  article-title: Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination
  publication-title: Applied Clay Science
  doi: 10.1016/j.clay.2007.10.001
– volume: 51
  start-page: 237
  year: 2003
  ident: 10.1016/j.envpol.2011.07.016_bib7
  article-title: Observations of 2,4,6-trichlorophenol degradation by ozone
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00815-9
– volume: 129
  start-page: 267
  year: 2004
  ident: 10.1016/j.envpol.2011.07.016_bib6
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2003.10.008
– volume: 41
  start-page: 6841
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib13
  article-title: Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles
  publication-title: Environmental Science and Technology
  doi: 10.1021/es070769c
– volume: 63
  start-page: 285
  year: 2006
  ident: 10.1016/j.envpol.2011.07.016_bib30
  article-title: Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.07.021
– volume: 34
  start-page: 2014
  year: 2000
  ident: 10.1016/j.envpol.2011.07.016_bib11
  article-title: Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons
  publication-title: Environmental Science and Technology
  doi: 10.1021/es991129f
– volume: 33
  start-page: 2651
  year: 1999
  ident: 10.1016/j.envpol.2011.07.016_bib5
  article-title: Reductive of vinyl chloride in metallic iron–water systems
  publication-title: Environmental Science and Technology
  doi: 10.1021/es980554q
– volume: 44
  start-page: 989
  year: 2001
  ident: 10.1016/j.envpol.2011.07.016_bib23
  article-title: Preparations of organobentonite using nonionic surfactants
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00564-6
– volume: 31
  start-page: 1407
  year: 1997
  ident: 10.1016/j.envpol.2011.07.016_bib36
  article-title: Sorption of organobentonites to some organic pollutants in water
  publication-title: Environmental Science and Technology
  doi: 10.1021/es960641n
– volume: 21
  start-page: 10602
  year: 2005
  ident: 10.1016/j.envpol.2011.07.016_bib31
  article-title: Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite
  publication-title: Langmuir
  doi: 10.1021/la051714w
– volume: 71
  start-page: 302
  year: 2010
  ident: 10.1016/j.envpol.2011.07.016_bib33
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Separation and Purification Technology
  doi: 10.1016/j.seppur.2009.12.010
– volume: 35
  start-page: 3713
  year: 2001
  ident: 10.1016/j.envpol.2011.07.016_bib1
  article-title: Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron
  publication-title: Environmental Science and Technology
  doi: 10.1021/es010564i
– volume: 152
  start-page: 699
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib10
  article-title: Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2007.07.036
– volume: 34
  start-page: 1794
  year: 2000
  ident: 10.1016/j.envpol.2011.07.016_bib2
  article-title: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles
  publication-title: Environmental Science and Technology
  doi: 10.1021/es990884q
– volume: 42
  start-page: 2600
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib8
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environmental Science and Technology
  doi: 10.1021/es702589u
– volume: 180
  start-page: 79
  year: 2010
  ident: 10.1016/j.envpol.2011.07.016_bib4
  article-title: Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2010.03.068
– volume: 36
  start-page: 3597
  year: 2002
  ident: 10.1016/j.envpol.2011.07.016_bib32
  article-title: Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets
  publication-title: Environmental Science and Technology
  doi: 10.1021/es015816u
– volume: 70
  start-page: 1987
  year: 2008
  ident: 10.1016/j.envpol.2011.07.016_bib37
  article-title: Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.09.042
– volume: 147
  start-page: 409
  year: 2007
  ident: 10.1016/j.envpol.2011.07.016_bib21
  article-title: Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2006.05.023
– volume: 43
  start-page: 1831
  year: 2009
  ident: 10.1016/j.envpol.2011.07.016_bib38
  article-title: Fenton’s oxidation of pentachlorophenol
  publication-title: Water Research
  doi: 10.1016/j.watres.2009.01.024
SSID ssj0004333
Score 2.3933384
Snippet Nanoscale zero valent iron (NZVI) was immobilized on the organobentonite (CTMA-bent), so as to enhance the reactivity of NZVI and prevent its aggregation. This...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3744
SubjectTerms Adsorption
Applied sciences
bentonite
Bentonite - chemistry
Biological and physicochemical phenomena
chemistry
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Environmental Restoration and Remediation
Environmental Restoration and Remediation - instrumentation
Environmental Restoration and Remediation - methods
Exact sciences and technology
Immobilization
instrumentation
ions
Iron
Iron - chemistry
Kinetics
Mass transfer
methods
Nanocomposites
Nanocomposites - chemistry
Nanomaterials
Nanoscale zero valent iron
Nanostructure
Natural water pollution
Organobentonite
Particle Size
Pentachlorophenol
Pentachlorophenol - chemistry
phenol
Pollution
Pollution, environment geology
Removal
Surface chemistry
Water Pollutants, Chemical
Water Pollutants, Chemical - chemistry
Water treatment and pollution
X-Ray Diffraction
Title Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent iron immobilized on organobentonite
URI https://dx.doi.org/10.1016/j.envpol.2011.07.016
https://www.ncbi.nlm.nih.gov/pubmed/21906860
https://www.proquest.com/docview/1663616699
https://www.proquest.com/docview/1777170948
https://www.proquest.com/docview/902378637
https://www.proquest.com/docview/903658719
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuMABQcdY-aiMhLhlTWInjrlVU6cCYpdRaTfLTmzWqYurfkzaDvztvOckK5PYJnGp1Og5duzn59-zf36PkE-xTgTAIBE5nrqI2xLsYJHJKDEs1Q4jvEm8jfzjJJ9M-bez7GyHHHV3YZBW2dr-xqYHa90-Gba9OVzMZsNT8B4ADONkxeOt4AJxLlDLD39vaR6cNenkQThC6e76XOB42fpq4edtIE9xGGPW838vT0-c9sib1CvoOtfkvLgflIbF6fgledGiSjpqGv6K7Ni6R_ZGNXjUl9f0Mw08z7CB3iPP_wpB2CP74-1NN3hDO9VXe2Qzrs8DO4Au7aUHfaTe0QVKlefg42M4gtrPqbmmmtb-ys4pstORAma_ULDZHj_B0hu79BRKQ0GK9dAZKD4Scm_gzfA3ZJXyxmIqYyj6mkyPxz-PJlGboyHSeZyuo8pqDR6VKbK8guXfMVs4x0wmTSxLbrgRLkcXVcellFyzEhAEL9LKGg3gpJJsn-zWvrYHhPIYNKUUDhANuC3amKJgpXVCM1u53GZ9wrqhUWUbwBzzaMxVx1S7UM2AKhxQFQsFD_skui21aAJ4PCIvulFXdxRRwRrzSMkDUBKlf4F1VtPTFPeSwjlXWvTJ4I7m3LYk5QA_WZL0ycdOlRTMbzy00bX1m5VKABLm8CPlAzJCgFcOjjpURO-RkTA6osiZeEiEAR4VCdT0ptHmbTsBN-ZFHr_97955R56F7fjABHpPdtfLjf0AeG5tBmHCDsjT0dfvk5M_x89LJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHBFtKl0cxEnBLN4m9cYLEoYKttvRxaVfqzdiJTRdt49U-irYH_hR_kBkn6VKJthJSL5ESjWPHM55H_HmGkHehigS4QSKwPLYBNznowbSbBZFmsbKY4S3D08gHh0l_wL-edE9WyO_mLAzCKmvdX-l0r63rJ516Njvj4bBzBNEDOMO4WHF7K4lqZOWeWfyEuG36afcLMPl9HO_0jj_3g7q0QKCSMJ4FhVEKAgGddpMCrJZlJrWW6W6mwyznmmthE4ysVJhnGVcsB8PH07gwWoFNLTADE-j9-xzUBZZN2Pq1xJVwVtWvh9EFOLzmvJ4HlZnyfOxGdeZQsRVimfV_28N7VjkEaqop8MpWRTau94K9Ndx5Qh7XbizdrmbqKVkxZYusbZcQwp8t6AfqgaX-j32LPPor52GLrPeWR-vgDbVuma6Rea889XAEOjFnDhYAdZaOkSo_HbkJ5j8o3YjqBVW0dOdmRBEOj5gz85GCkXD4CYZemImj0BoaUuyHDmGlIQL4At4Mt76MldMGaydD02dkcCecWyerpSvNBqE8BNHMhQUXCuIkpXWastxYoZgpbGK6bcIa1si8zpiOhTtGsoHG_ZAVQyUyVIZCwsM2CS5bjauMIbfQi4br8orkSzBqt7TcACGR6juYAzk4ivHnld9Yi9M22bwiOZcjiTn4uyyK2uRtI0oSFAruEqnSuPlURuCDJnDJshtohBAwaRmHjug1NBlwR6QJEzeRMHCARQQ9Pa-keTlOcFSTNAlf_PfsvCEP-scH-3J_93DvJXno9wI8DOkVWZ1N5uY1OJMzvekXLyXf7lpb_AH_XobN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+removal+of+pentachlorophenol+by+a+novel+composite%3A+nanoscale+zero+valent+iron+immobilized+on+organobentonite&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Li%2C+Yimin&rft.au=Zhang%2C+Yun&rft.au=Li%2C+Jianfa&rft.au=Zheng%2C+Xuming&rft.date=2011-12-01&rft.issn=1873-6424&rft.eissn=1873-6424&rft.volume=159&rft.issue=12&rft.spage=3744&rft_id=info:doi/10.1016%2Fj.envpol.2011.07.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon