Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases

Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum–iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 120; no. 12; pp. 5107 - 5157
Main Authors Jasniewski, Andrew J, Lee, Chi Chung, Ribbe, Markus W, Hu, Yilin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum–iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two “alternative nitrogenase” systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
AbstractList Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum–iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N . Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N₂. Nitrogenase is most commonly associated with the molybdenum–iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two “alternative nitrogenase” systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N 2 . Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980’s and early 1990’s, two ‘alternative nitrogenase’ systems were discovered, isolated, and were found to incorporate V or Fe in place of the Mo. These systems are regulated by separate gene clusters, however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though, key aspects about V- and Fe-nitrogenases remain unexplored.
Author Hu, Yilin
Jasniewski, Andrew J
Lee, Chi Chung
Ribbe, Markus W
AuthorAffiliation Department of Chemistry
University of California
Department of Molecular Biology and Biochemistry
AuthorAffiliation_xml – name: Department of Molecular Biology and Biochemistry
– name: University of California
– name: Department of Chemistry
– name: a Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900
– name: b Department of Chemistry, University of California, Irvine, CA 92697-2025
Author_xml – sequence: 1
  givenname: Andrew J
  orcidid: 0000-0001-7614-0796
  surname: Jasniewski
  fullname: Jasniewski, Andrew J
  organization: Department of Molecular Biology and Biochemistry
– sequence: 2
  givenname: Chi Chung
  surname: Lee
  fullname: Lee, Chi Chung
  organization: Department of Molecular Biology and Biochemistry
– sequence: 3
  givenname: Markus W
  orcidid: 0000-0002-7366-1526
  surname: Ribbe
  fullname: Ribbe, Markus W
  email: mribbe@uci.edu
  organization: University of California
– sequence: 4
  givenname: Yilin
  orcidid: 0000-0002-9088-2865
  surname: Hu
  fullname: Hu, Yilin
  email: yilinh@uci.edu
  organization: Department of Molecular Biology and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32129988$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1802675$$D View this record in Osti.gov
BookMark eNqFkktrGzEUhUVJaZy0v6BQhnbTRcaRNHpuAsb0BWkLJXuhUe7ECjNSKskG__vKtWvaLJqVEPc7Rzr33jN0EmIAhF4TPCeYkkvr8tytYEqwmeseY4nZMzQjnOJWKI1P0AxjrFsqBD9FZznf1yvnVL5Apx0lVGulZmj5A6wrfuPL9qL5Cm5lg8_TRWPDbbPIGaZ-3DZxaMoKmsVYIAVbaWi--ZLiHQSbIb9Ezwc7Znh1OM_RzccPN8vP7fX3T1-Wi-vWcq1L66xmTgonnYZbJwnuseSi7zlTeKA9UVRawQnmAzBqbacx7ghA5VhVue4cXe1tH9b9VB0glGRH85D8ZNPWROvNv5XgV-YuboxkmnDJq8HbvUHMxZvsfKl5XQwBXDFEYSp-Q-8Pr6T4cw25mMlnB-NoA8R1NpR1mlGlhH4a7SRRgjDSVfTdI_Q-rmsvx50hkUxqqmWl3vyd8Bjtz7gq0O0Bl2LOCYYjQrDZLYWpS2EOS2EOS1FV-pGqRq9jjLs2-fEJ7eVeuyse__w_xS8Bkc9y
CitedBy_id crossref_primary_10_1128_mBio_01568_21
crossref_primary_10_1021_jacs_4c17893
crossref_primary_10_1007_s12268_024_2227_5
crossref_primary_10_1039_D1DT04212B
crossref_primary_10_1038_s41586_022_04848_1
crossref_primary_10_1016_j_ccr_2024_215662
crossref_primary_10_1021_acs_chemrev_1c00914
crossref_primary_10_1039_D0CS01341B
crossref_primary_10_1021_acscatal_1c00218
crossref_primary_10_1039_D0CC07146C
crossref_primary_10_1021_jacs_4c16047
crossref_primary_10_1039_D2DT01378A
crossref_primary_10_2142_biophysico_bppb_v19_0001
crossref_primary_10_1021_acs_inorgchem_2c00180
crossref_primary_10_1021_jacs_2c09576
crossref_primary_10_1002_cbic_202400833
crossref_primary_10_1038_s41570_020_0208_x
crossref_primary_10_3390_molecules28031392
crossref_primary_10_1039_D3DT00648D
crossref_primary_10_1111_mmi_14890
crossref_primary_10_1126_sciadv_ado7729
crossref_primary_10_1002_anie_202400273
crossref_primary_10_1021_acs_inorgchem_2c03967
crossref_primary_10_1039_D1DT00317H
crossref_primary_10_1016_j_ccr_2022_214838
crossref_primary_10_1002_cssc_202300981
crossref_primary_10_1007_s00775_024_02085_7
crossref_primary_10_1016_j_cocr_2024_100001
crossref_primary_10_1016_j_trechm_2022_12_001
crossref_primary_10_1039_D4DT00937A
crossref_primary_10_1039_D3CP01106B
crossref_primary_10_3390_biology12111423
crossref_primary_10_1021_acs_chemrev_0c00958
crossref_primary_10_3390_chemistry2020021
crossref_primary_10_1021_acs_chemrev_2c00612
crossref_primary_10_1128_mbio_02572_23
crossref_primary_10_1016_j_apsoil_2022_104571
crossref_primary_10_1002_anie_202011367
crossref_primary_10_1038_s41467_024_52116_9
crossref_primary_10_1039_D0SC06561G
crossref_primary_10_1073_pnas_2015361118
crossref_primary_10_1246_bcsj_20220143
crossref_primary_10_1038_s41570_023_00462_5
crossref_primary_10_1021_acs_organomet_4c00283
crossref_primary_10_1002_ejic_202200739
crossref_primary_10_1002_anie_202202271
crossref_primary_10_1038_s41594_023_01124_2
crossref_primary_10_1016_j_ccr_2021_214229
crossref_primary_10_1126_sciadv_ado6169
crossref_primary_10_1016_j_jinorgbio_2024_112484
crossref_primary_10_1038_s41929_024_01229_x
crossref_primary_10_1021_jacs_3c07254
crossref_primary_10_1016_j_jinorgbio_2020_111278
crossref_primary_10_1002_ange_202011367
crossref_primary_10_1016_j_jprot_2023_105061
crossref_primary_10_1021_acs_inorgchem_3c02329
crossref_primary_10_14348_molcells_2023_0086
crossref_primary_10_1002_ejic_202300399
crossref_primary_10_1002_anie_202203121
crossref_primary_10_1021_jacs_3c12157
crossref_primary_10_1021_acs_accounts_4c00068
crossref_primary_10_1016_j_ccr_2022_214783
crossref_primary_10_1021_jacs_1c04152
crossref_primary_10_1128_mbio_03314_23
crossref_primary_10_1021_acsami_3c06493
crossref_primary_10_1021_jacs_2c04826
crossref_primary_10_1021_acs_chemrev_2c00879
crossref_primary_10_1002_ejic_202100877
crossref_primary_10_1002_anie_202209190
crossref_primary_10_1002_cctc_202100393
crossref_primary_10_1128_jb_00197_22
crossref_primary_10_1002_ange_202203121
crossref_primary_10_1039_D4SC02227K
crossref_primary_10_1021_acscatal_1c01993
crossref_primary_10_1111_febs_17148
crossref_primary_10_1021_jacsau_0c00072
crossref_primary_10_1016_j_ympev_2022_107624
crossref_primary_10_1021_jacs_2c00276
crossref_primary_10_1038_s41557_021_00799_8
crossref_primary_10_1107_S2059798325000415
crossref_primary_10_1002_ange_202209190
crossref_primary_10_1002_1873_3468_14534
crossref_primary_10_1099_ijsem_0_006292
crossref_primary_10_1073_pnas_2314788120
crossref_primary_10_3390_molecules28247952
crossref_primary_10_1016_j_jinorgbio_2024_112669
crossref_primary_10_1039_D1CS00381J
crossref_primary_10_1016_j_jallcom_2022_167884
crossref_primary_10_1038_s41929_022_00844_w
crossref_primary_10_1016_j_xcrp_2021_100444
crossref_primary_10_1021_acs_chemrestox_4c00385
crossref_primary_10_1128_aem_00574_24
crossref_primary_10_1002_ange_202400273
crossref_primary_10_3390_microbiolres16020034
crossref_primary_10_1016_j_ijhydene_2025_01_077
crossref_primary_10_1021_acs_inorgchem_1c02649
crossref_primary_10_1007_s00775_020_01838_4
crossref_primary_10_1021_acs_inorgchem_0c01320
crossref_primary_10_1021_acs_inorgchem_1c00503
crossref_primary_10_1080_10409238_2023_2181309
crossref_primary_10_1002_ange_202202271
crossref_primary_10_3390_ijms22168806
crossref_primary_10_1039_D2DT01534J
crossref_primary_10_1016_j_tet_2021_131986
crossref_primary_10_1107_S2052252524008406
crossref_primary_10_1016_j_jinorgbio_2021_111426
crossref_primary_10_1016_j_mtener_2025_101839
crossref_primary_10_1073_pnas_2406198121
crossref_primary_10_1007_s12598_024_02680_2
crossref_primary_10_4019_bjscc_81_58
crossref_primary_10_1002_cbic_202400585
crossref_primary_10_1016_j_jbc_2025_108291
crossref_primary_10_1002_ange_202015751
crossref_primary_10_1002_jcc_27281
crossref_primary_10_1039_D0CC05078D
crossref_primary_10_1002_anie_202402678
crossref_primary_10_1039_D3DT04126C
crossref_primary_10_1002_cbic_202100453
crossref_primary_10_1128_mbio_01271_24
crossref_primary_10_1016_j_jinorgbio_2021_111430
crossref_primary_10_1021_acs_inorgchem_2c01561
crossref_primary_10_5059_yukigoseikyokaishi_80_854
crossref_primary_10_1021_acsami_3c06739
crossref_primary_10_3390_molecules27196743
crossref_primary_10_1002_cbic_202200384
crossref_primary_10_1016_j_jinorgbio_2022_111837
crossref_primary_10_1002_ange_202402678
crossref_primary_10_1002_anie_202015751
crossref_primary_10_1021_acs_inorgchem_3c02089
crossref_primary_10_1021_jacsau_3c00567
crossref_primary_10_1002_cbic_202000598
crossref_primary_10_1007_s00775_024_02086_6
crossref_primary_10_1128_JB_00146_21
crossref_primary_10_1021_jacsau_3c00165
crossref_primary_10_1016_j_jbc_2021_100501
crossref_primary_10_1039_D4NR02883J
crossref_primary_10_1038_s41929_022_00782_7
crossref_primary_10_1128_AEM_00849_20
crossref_primary_10_1021_acs_biochem_3c00421
Cites_doi 10.1002/cbic.201800035
10.1021/bi00708a023
10.1002/anie.201005145
10.1029/2007JG000651
10.1039/b308188e
10.1021/bi00016a009
10.1042/bj2770465
10.1002/chem.201803735
10.1002/j.1460-2075.1989.tb03495.x
10.1126/science.1529353
10.1073/pnas.1402976111
10.1016/0162-0134(95)97646-8
10.1038/272557a0
10.1021/bi9626665
10.1021/acs.inorgchem.7b02493
10.1038/s41929-018-0079-4
10.1002/anie.201108916
10.1007/s10533-016-0188-6
10.1128/JB.171.2.1075-1086.1989
10.1021/ja807525m
10.1021/jacs.6b01230
10.1073/pnas.0602130103
10.1016/S0168-6445(99)00033-9
10.1021/ja026478f
10.1021/bi034595x
10.1021/ja953124y
10.1021/jacs.6b11633
10.1021/jacs.8b13084
10.1021/ja0544509
10.1038/s41557-018-0029-4
10.1126/science.1529354
10.1021/bi00291a010
10.1073/pnas.1213159109
10.3389/fmicb.2011.00205
10.1021/cr4005814
10.1016/S0021-9258(18)47717-4
10.1021/cr950055x
10.1039/C7DT00128B
10.1021/ja9837405
10.1016/0003-9861(80)90033-8
10.1016/j.soilbio.2013.11.015
10.1021/cr400641x
10.1021/bi0270790
10.1038/s41564-017-0091-5
10.1021/bi00621a017
10.1128/AEM.02694-07
10.1128/JB.05099-11
10.1002/mbo3.921
10.1021/jacs.6b06362
10.1126/science.1214025
10.1007/s002480000090
10.1039/c000264j
10.1021/bi501313k
10.1128/JB.171.6.3162-3167.1989
10.1073/pnas.1810211115
10.1002/chem.201202072
10.1021/ja00066a019
10.1021/bi0016467
10.1126/science.1085326
10.1007/s00203-006-0150-4
10.1021/acs.biochem.6b00421
10.1021/ja101737f
10.1128/JB.173.23.7565-7572.1991
10.1016/0005-2795(80)90015-X
10.1021/bi982866b
10.1021/ic102446n
10.1021/ja961289g
10.1039/C8MT00038G
10.1073/pnas.0507853103
10.1007/s00775-009-0614-5
10.1093/molbev/msh047
10.1021/cr9500545
10.1016/S0021-9258(17)41861-8
10.1042/bj2510165
10.1126/science.6585956
10.1126/science.1191455
10.1021/bi00445a040
10.1038/343188a0
10.1016/j.cbpa.2016.02.016
10.1021/bi00261a031
10.1039/dt9770001852
10.1021/ic200636k
10.1021/bi951429j
10.1021/acscentsci.8b00553
10.1186/s12866-016-0642-6
10.1016/S0021-9258(17)31909-9
10.1111/j.1432-1033.1991.tb15750.x
10.1007/s00775-009-0544-2
10.1021/ja00048a034
10.1021/bi062294s
10.1126/science.1069651
10.1021/acs.biochem.9b00468
10.1126/science.1256679
10.1042/bj2720621
10.1021/bi00381a001
10.1002/chem.201704378
10.1038/nchembio.2428
10.1007/s11244-006-0002-0
10.1002/cctc.201200635
10.1021/ja00256a051
10.1038/327167a0
10.1038/nature14180
10.1073/pnas.1311218110
10.1021/bi00212a043
10.1021/bi00562a035
10.1021/bi201003a
10.1002/anie.201901899
10.1016/0003-2697(92)90491-O
10.1186/1471-2164-13-162
10.1073/pnas.57.5.1317
10.1038/ncomms13641
10.1128/JB.123.2.537-545.1975
10.1126/science.1206445
10.1111/j.1432-1033.1975.tb21025.x
10.1039/C8DT04531C
10.1039/B605133B
10.1007/s00775-014-1230-6
10.1021/ic50004a022
10.7554/eLife.11620
10.1073/pnas.1315852110
10.1038/360553a0
10.1021/ja910613m
10.1073/pnas.0904408106
10.3390/inorganics6010025
10.1039/C4SC00337C
10.1021/bi00603a010
10.1021/bi00034a003
10.1007/978-1-61779-194-9_16
10.1093/nar/18.15.4616
10.1021/cr00106a002
10.1016/j.jinorgbio.2006.02.016
10.1111/j.1432-1033.1993.tb17632.x
10.1021/cr400463x
10.1042/bj2580733
10.1073/pnas.0610975104
10.1038/ncomms9034
10.1042/bj1350331
10.1021/bi00323a006
10.1074/jbc.M408983200
10.1021/bi0001628
10.1002/cbic.201900425
10.1021/ja304077h
10.1021/ja054078x
10.1016/S0021-9258(17)39160-3
10.1016/0014-5793(72)80410-1
10.1021/ic102287j
10.1016/j.bioelechem.2017.12.002
10.1039/C6DT03159E
10.1111/j.1432-1033.1997.t01-1-00789.x
10.1021/acs.accounts.9b00063
10.1128/JB.173.18.5705-5711.1991
10.1042/bj2530587
10.1021/ja00138a033
10.1042/bj2490745
10.1073/pnas.1519696112
10.1128/AEM.65.11.4935-4942.1999
10.1073/pnas.1102773108
10.1021/cr400479b
10.1002/anie.200502667
10.1029/1999GB900014
10.1021/bi00373a005
10.1021/acs.chemrev.6b00091
10.3389/fmicb.2013.00201
10.1146/annurev.biochem.78.070907.103812
10.1042/bj2440197
10.1021/ja00074a050
10.1126/science.1205358
10.1042/bj2890395
10.1038/325372a0
10.1021/bi981509y
10.1126/science.1206883
10.1021/bi951430i
10.1002/anie.201800189
10.1016/j.freeradbiomed.2019.01.050
10.1021/acs.inorgchem.6b02540
10.1073/pnas.74.8.3249
10.1042/bj2240877
10.1038/387370a0
10.1002/chem.200400382
10.1039/C5DT03223G
10.1021/ja00305a007
10.1073/pnas.0602651103
10.1126/science.1196954
10.1021/ic802192w
10.3389/fmicb.2017.00267
10.1016/S0021-9258(18)48120-3
10.1038/nature08302
10.1104/pp.43.8.1185
10.3109/10408418809104465
10.1038/s41467-018-05272-8
10.1021/ja303739g
10.1021/acs.chemrev.6b00168
10.1016/j.bbapap.2012.01.010
10.1021/ja00220a066
10.1042/bj2240887
10.1073/pnas.0603223103
10.1021/bi00521a007
10.1021/bi00528a034
10.1016/j.ccr.2013.02.010
10.1021/bi00181a031
10.1007/s00775-018-1602-4
10.1016/S0021-9258(17)32225-1
10.1128/mBio.00310-18
10.1021/cr950057h
10.1074/jbc.M111.229344
10.1126/science.1211906
10.1128/mBio.00307-15
10.1002/anie.201406863
10.1126/science.1224603
10.1038/nchem.1620
10.1021/ja980598z
10.1016/S0021-9258(18)45141-1
10.1007/BF00292722
10.1021/ja00105a080
10.1002/ejic.201100029
10.1039/C9SC03610E
10.1016/0162-0134(88)80039-4
10.1002/cbic.201500305
10.1021/ja067562o
10.1007/s007750100263
10.1021/bi00371a001
10.1038/253039b0
10.1042/bj3550569
10.1039/c1dt10240k
10.1016/j.febslet.2010.02.064
10.1126/science.1073877
10.1021/jacs.9b04474
10.1039/C5CP04034E
10.1021/acs.biochem.7b01142
10.1002/anie.201907593
10.1046/j.1432-1327.2002.02804.x
10.1073/pnas.0602647103
10.1007/BF00425127
10.1002/anie.201505930
10.1042/bj1020001C
10.1021/ja000254k
10.1021/ja9712837
10.1021/bi00286a011
10.1128/JB.175.15.4907-4910.1993
10.1073/pnas.1609574113
10.1021/bi7025003
10.1002/anie.201102724
10.1042/bj2240895
10.1002/j.1460-2075.1982.tb01276.x
10.1042/bj2240903
10.3390/life4040944
10.1021/acs.biochem.8b00784
10.1073/pnas.69.11.3142
10.1074/jbc.R113.454041
10.1042/bj1930971
10.1126/science.8484118
10.1042/bj2500299
10.1021/ar0501121
10.1042/EBC20160071
10.1146/annurev-biochem-060614-034108
10.1073/pnas.1510409112
10.1016/S0021-9258(18)83473-1
10.1038/259204a0
10.1002/anie.201410412
10.1007/BF00690162
10.1074/jbc.M304264200
10.1016/0005-2744(67)90114-3
10.1042/bj2930101
10.1021/bi001705g
10.1016/S0021-9258(19)57311-2
10.1002/ange.201608806
10.1016/0022-1902(66)80011-8
10.1021/bi00589a014
10.1021/bi036038g
10.1021/jacs.8b02319
10.1128/JB.187.22.7784-7794.2005
10.1016/0162-0134(94)85115-8
10.1021/bi00326a012
10.1016/S0162-0134(02)00480-4
10.1021/bi0017834
10.1021/ja9715096
10.1021/jacs.9b06546
10.1038/nchembio.2245
10.1126/science.aar2765
10.1111/nph.14166
10.1111/j.1472-4669.2011.00278.x
10.1126/science.1070010
10.1042/bj2610181
10.1021/ja043596p
10.1021/ja0539342
10.1073/pnas.0506967102
10.1042/bj2380437
10.1021/acs.accounts.8b00112
10.1021/ja205304t
10.1039/C8CC03793K
10.1016/S0021-9258(17)38102-4
10.1128/JB.170.1.27-33.1988
10.1021/cr00045a002
10.1042/bj2560429
10.1021/ja9035225
10.1021/bi061697p
10.1021/ja020186x
10.1007/s00775-016-1423-2
10.1038/ncomms10902
10.1021/ja971088s
10.1126/science.1229088
10.1126/science.1115653
10.1039/C9CP02073J
10.1016/S0022-328X(00)92481-1
10.1016/0005-2744(80)90180-1
10.1021/bi00009a008
10.1074/jbc.M403156200
10.1128/JB.178.5.1445-1450.1996
10.1021/ja1019657
10.1021/bi0514109
10.1074/jbc.M410247200
10.1006/jmbi.1999.3107
ContentType Journal Article
Copyright Copyright American Chemical Society Jun 24, 2020
Copyright_xml – notice: Copyright American Chemical Society Jun 24, 2020
CorporateAuthor Univ. of California, Irvine, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Irvine, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOI 10.1021/acs.chemrev.9b00704
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE
AGRICOLA



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 5157
ExternalDocumentID PMC7491575
1802675
32129988
10_1021_acs_chemrev_9b00704
b898973487
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM067626
GroupedDBID -
.K2
02
1AW
29B
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
ABFRP
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-a599t-ca94c76c7c9edc710b0756bb5480f2b1827a65105fe42aa390031ee10b476cc3
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Thu Aug 21 18:41:59 EDT 2025
Thu May 18 22:33:12 EDT 2023
Thu Jul 10 22:30:50 EDT 2025
Fri Jul 11 15:20:32 EDT 2025
Mon Jun 30 10:41:20 EDT 2025
Thu Apr 03 07:05:52 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Tue Jul 01 03:16:18 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a599t-ca94c76c7c9edc710b0756bb5480f2b1827a65105fe42aa390031ee10b476cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
SC0014470; SC0016510
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-7366-1526
0000-0002-9088-2865
0000-0001-7614-0796
0000000176140796
0000000290882865
0000000273661526
OpenAccessLink https://www.osti.gov/servlets/purl/1802675
PMID 32129988
PQID 2417479297
PQPubID 45407
PageCount 51
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7491575
osti_scitechconnect_1802675
proquest_miscellaneous_2439428869
proquest_miscellaneous_2371861413
proquest_journals_2417479297
pubmed_primary_32129988
crossref_primary_10_1021_acs_chemrev_9b00704
crossref_citationtrail_10_1021_acs_chemrev_9b00704
acs_journals_10_1021_acs_chemrev_9b00704
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-24
PublicationDateYYYYMMDD 2020-06-24
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref321/cit321
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
Ravi N. (ref161/cit161) 1994; 269
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref310/cit310
ref318/cit318
ref11/cit11
ref29/cit29
ref174/cit174
ref314/cit314
ref86/cit86
ref170/cit170
ref244/cit244
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
Chen L. (ref91/cit91) 1994; 269
ref133/cit133
ref207/cit207
ref28/cit28
ref279/cit279
ref203/cit203
ref275/cit275
ref233/cit233
ref148/cit148
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref22/cit22
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref222/cit222
ref150/cit150
ref294/cit294
ref63/cit63
ref295/cit295
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref306/cit306
ref230/cit230
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref164/cit164
ref213/cit213
ref284/cit284
ref286/cit286
ref78/cit78
ref211/cit211
ref312/cit312
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref131/cit131
ref205/cit205
ref320/cit320
ref142/cit142
ref216/cit216
ref301/cit301
ref289/cit289
ref15/cit15
ref180/cit180
ref235/cit235
ref309/cit309
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
Bennett L. T. (ref95/cit95) 1988; 263
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref281/cit281
ref7/cit7
ref45/cit45
Hales B. J. (ref224/cit224) 1987; 262
Harvey I. (ref166/cit166) 1990; 266
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref261/cit261
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref267/cit267
ref195/cit195
ref269/cit269
ref64/cit64
ref311/cit311
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref319/cit319
ref241/cit241
ref315/cit315
ref76/cit76
ref32/cit32
ref272/cit272
Zheng L. (ref39/cit39) 1994; 269
ref202/cit202
Lindahl P. A. (ref102/cit102) 1985; 260
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref287/cit287
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
Rawlings J. (ref130/cit130) 1978; 253
ref283/cit283
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
ref88/cit88
Deits T. L. (ref90/cit90) 1989; 264
ref160/cit160
ref234/cit234
ref143/cit143
ref302/cit302
ref217/cit217
ref288/cit288
ref53/cit53
ref149/cit149
ref162/cit162
ref308/cit308
ref46/cit46
McLean P. A. (ref181/cit181) 1987; 262
ref236/cit236
ref49/cit49
Lindahl P. A. (ref105/cit105) 1987; 262
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref215/cit215
ref280/cit280
ref50/cit50
ref282/cit282
ref313/cit313
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref201/cit201
ref51/cit51
ref277/cit277
ref135/cit135
ref68/cit68
ref94/cit94
ref274/cit274
ref204/cit204
ref146/cit146
ref305/cit305
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
ref250/cit250
ref108/cit108
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref285/cit285
References_xml – ident: ref222/cit222
  doi: 10.1002/cbic.201800035
– ident: ref188/cit188
– ident: ref88/cit88
  doi: 10.1021/bi00708a023
– ident: ref309/cit309
  doi: 10.1002/anie.201005145
– ident: ref29/cit29
  doi: 10.1029/2007JG000651
– ident: ref109/cit109
  doi: 10.1039/b308188e
– ident: ref240/cit240
  doi: 10.1021/bi00016a009
– ident: ref207/cit207
  doi: 10.1042/bj2770465
– ident: ref321/cit321
  doi: 10.1002/chem.201803735
– ident: ref144/cit144
  doi: 10.1002/j.1460-2075.1989.tb03495.x
– ident: ref69/cit69
  doi: 10.1126/science.1529353
– ident: ref27/cit27
  doi: 10.1073/pnas.1402976111
– ident: ref174/cit174
  doi: 10.1016/0162-0134(95)97646-8
– ident: ref211/cit211
  doi: 10.1038/272557a0
– ident: ref126/cit126
  doi: 10.1021/bi9626665
– ident: ref195/cit195
  doi: 10.1021/acs.inorgchem.7b02493
– ident: ref254/cit254
  doi: 10.1038/s41929-018-0079-4
– ident: ref247/cit247
  doi: 10.1002/anie.201108916
– volume: 266
  start-page: 929
  year: 1990
  ident: ref166/cit166
  publication-title: Biochem. J.
– ident: ref21/cit21
  doi: 10.1007/s10533-016-0188-6
– ident: ref16/cit16
  doi: 10.1128/JB.171.2.1075-1086.1989
– ident: ref80/cit80
  doi: 10.1021/ja807525m
– ident: ref290/cit290
  doi: 10.1021/jacs.6b01230
– ident: ref294/cit294
  doi: 10.1073/pnas.0602130103
– ident: ref55/cit55
  doi: 10.1016/S0168-6445(99)00033-9
– ident: ref107/cit107
  doi: 10.1021/ja026478f
– ident: ref313/cit313
  doi: 10.1021/bi034595x
– ident: ref236/cit236
  doi: 10.1021/ja953124y
– ident: ref250/cit250
  doi: 10.1021/jacs.6b11633
– ident: ref275/cit275
  doi: 10.1021/jacs.8b13084
– ident: ref155/cit155
  doi: 10.1021/ja0544509
– ident: ref51/cit51
  doi: 10.1038/s41557-018-0029-4
– ident: ref68/cit68
  doi: 10.1126/science.1529354
– ident: ref228/cit228
  doi: 10.1021/bi00291a010
– ident: ref241/cit241
  doi: 10.1073/pnas.1213159109
– ident: ref25/cit25
  doi: 10.3389/fmicb.2011.00205
– ident: ref274/cit274
  doi: 10.1021/cr4005814
– volume: 262
  start-page: 16205
  year: 1987
  ident: ref224/cit224
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47717-4
– ident: ref66/cit66
  doi: 10.1021/cr950055x
– ident: ref170/cit170
  doi: 10.1039/C7DT00128B
– ident: ref112/cit112
  doi: 10.1021/ja9837405
– ident: ref292/cit292
  doi: 10.1016/0003-9861(80)90033-8
– ident: ref8/cit8
  doi: 10.1016/j.soilbio.2013.11.015
– ident: ref197/cit197
  doi: 10.1021/cr400641x
– ident: ref223/cit223
  doi: 10.1021/bi0270790
– ident: ref177/cit177
  doi: 10.1038/s41564-017-0091-5
– ident: ref201/cit201
  doi: 10.1021/bi00621a017
– ident: ref7/cit7
  doi: 10.1128/AEM.02694-07
– ident: ref18/cit18
  doi: 10.1128/JB.05099-11
– ident: ref19/cit19
  doi: 10.1002/mbo3.921
– ident: ref260/cit260
  doi: 10.1021/jacs.6b06362
– ident: ref212/cit212
– ident: ref116/cit116
  doi: 10.1126/science.1214025
– ident: ref4/cit4
  doi: 10.1007/s002480000090
– ident: ref60/cit60
  doi: 10.1039/c000264j
– ident: ref193/cit193
  doi: 10.1021/bi501313k
– ident: ref97/cit97
  doi: 10.1128/JB.171.6.3162-3167.1989
– ident: ref266/cit266
  doi: 10.1073/pnas.1810211115
– ident: ref308/cit308
  doi: 10.1002/chem.201202072
– ident: ref167/cit167
  doi: 10.1021/ja00066a019
– ident: ref113/cit113
  doi: 10.1021/bi0016467
– ident: ref284/cit284
  doi: 10.1126/science.1085326
– ident: ref15/cit15
  doi: 10.1007/s00203-006-0150-4
– ident: ref261/cit261
  doi: 10.1021/acs.biochem.6b00421
– ident: ref129/cit129
  doi: 10.1021/ja101737f
– ident: ref64/cit64
  doi: 10.1128/JB.173.23.7565-7572.1991
– ident: ref121/cit121
  doi: 10.1016/0005-2795(80)90015-X
– ident: ref128/cit128
  doi: 10.1021/bi982866b
– ident: ref183/cit183
  doi: 10.1021/ic102446n
– ident: ref305/cit305
  doi: 10.1021/ja961289g
– ident: ref17/cit17
  doi: 10.1039/C8MT00038G
– ident: ref44/cit44
  doi: 10.1073/pnas.0507853103
– ident: ref63/cit63
  doi: 10.1007/s00775-009-0614-5
– ident: ref10/cit10
  doi: 10.1093/molbev/msh047
– ident: ref65/cit65
  doi: 10.1021/cr9500545
– volume: 269
  start-page: 3290
  year: 1994
  ident: ref91/cit91
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41861-8
– ident: ref101/cit101
  doi: 10.1042/bj2510165
– ident: ref216/cit216
  doi: 10.1126/science.6585956
– ident: ref238/cit238
  doi: 10.1126/science.1191455
– ident: ref192/cit192
  doi: 10.1021/bi00445a040
– ident: ref153/cit153
  doi: 10.1038/343188a0
– ident: ref37/cit37
  doi: 10.1016/j.cbpa.2016.02.016
– ident: ref233/cit233
  doi: 10.1021/bi00261a031
– ident: ref282/cit282
  doi: 10.1039/dt9770001852
– ident: ref35/cit35
  doi: 10.1021/ic200636k
– ident: ref148/cit148
  doi: 10.1021/bi951429j
– ident: ref252/cit252
  doi: 10.1021/acscentsci.8b00553
– ident: ref40/cit40
  doi: 10.1186/s12866-016-0642-6
– volume: 269
  start-page: 20920
  year: 1994
  ident: ref161/cit161
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31909-9
– ident: ref14/cit14
  doi: 10.1111/j.1432-1033.1991.tb15750.x
– ident: ref190/cit190
  doi: 10.1007/s00775-009-0544-2
– ident: ref125/cit125
  doi: 10.1021/ja00048a034
– ident: ref293/cit293
  doi: 10.1021/bi062294s
– ident: ref24/cit24
  doi: 10.1126/science.1069651
– ident: ref220/cit220
  doi: 10.1021/acs.biochem.9b00468
– ident: ref299/cit299
  doi: 10.1126/science.1256679
– ident: ref214/cit214
  doi: 10.1042/bj2720621
– ident: ref159/cit159
  doi: 10.1021/bi00381a001
– ident: ref104/cit104
  doi: 10.1002/chem.201704378
– ident: ref74/cit74
  doi: 10.1038/nchembio.2428
– ident: ref285/cit285
  doi: 10.1007/s11244-006-0002-0
– ident: ref319/cit319
  doi: 10.1002/cctc.201200635
– ident: ref160/cit160
  doi: 10.1021/ja00256a051
– ident: ref219/cit219
  doi: 10.1038/327167a0
– ident: ref28/cit28
  doi: 10.1038/nature14180
– ident: ref262/cit262
  doi: 10.1073/pnas.1311218110
– ident: ref191/cit191
  doi: 10.1021/bi00212a043
– ident: ref134/cit134
  doi: 10.1021/bi00562a035
– ident: ref127/cit127
  doi: 10.1021/bi201003a
– ident: ref185/cit185
  doi: 10.1002/anie.201901899
– ident: ref296/cit296
  doi: 10.1016/0003-2697(92)90491-O
– ident: ref1/cit1
  doi: 10.1186/1471-2164-13-162
– ident: ref225/cit225
  doi: 10.1073/pnas.57.5.1317
– ident: ref239/cit239
  doi: 10.1038/ncomms13641
– ident: ref215/cit215
  doi: 10.1128/JB.123.2.537-545.1975
– ident: ref119/cit119
  doi: 10.1126/science.1206445
– ident: ref206/cit206
  doi: 10.1111/j.1432-1033.1975.tb21025.x
– ident: ref302/cit302
  doi: 10.1039/C8DT04531C
– ident: ref253/cit253
  doi: 10.1039/B605133B
– ident: ref172/cit172
  doi: 10.1007/s00775-014-1230-6
– ident: ref234/cit234
  doi: 10.1021/ic50004a022
– ident: ref300/cit300
  doi: 10.7554/eLife.11620
– ident: ref265/cit265
  doi: 10.1073/pnas.1315852110
– ident: ref67/cit67
  doi: 10.1038/360553a0
– ident: ref271/cit271
  doi: 10.1021/ja910613m
– ident: ref149/cit149
  doi: 10.1073/pnas.0904408106
– ident: ref77/cit77
  doi: 10.3390/inorganics6010025
– ident: ref171/cit171
  doi: 10.1039/C4SC00337C
– ident: ref89/cit89
  doi: 10.1021/bi00603a010
– ident: ref100/cit100
  doi: 10.1021/bi00034a003
– ident: ref246/cit246
  doi: 10.1007/978-1-61779-194-9_16
– ident: ref145/cit145
  doi: 10.1093/nar/18.15.4616
– ident: ref131/cit131
  doi: 10.1021/cr00106a002
– ident: ref86/cit86
  doi: 10.1016/j.jinorgbio.2006.02.016
– ident: ref120/cit120
  doi: 10.1111/j.1432-1033.1993.tb17632.x
– ident: ref32/cit32
  doi: 10.1021/cr400463x
– ident: ref165/cit165
  doi: 10.1042/bj2580733
– ident: ref269/cit269
  doi: 10.1073/pnas.0610975104
– ident: ref49/cit49
  doi: 10.1038/ncomms9034
– ident: ref132/cit132
  doi: 10.1042/bj1350331
– ident: ref227/cit227
  doi: 10.1021/bi00323a006
– ident: ref82/cit82
  doi: 10.1074/jbc.M408983200
– ident: ref151/cit151
  doi: 10.1021/bi0001628
– ident: ref139/cit139
  doi: 10.1002/cbic.201900425
– ident: ref122/cit122
  doi: 10.1021/ja304077h
– ident: ref317/cit317
  doi: 10.1021/ja054078x
– volume: 260
  start-page: 11160
  year: 1985
  ident: ref102/cit102
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39160-3
– ident: ref93/cit93
  doi: 10.1016/0014-5793(72)80410-1
– ident: ref111/cit111
  doi: 10.1021/ic102287j
– ident: ref244/cit244
  doi: 10.1016/j.bioelechem.2017.12.002
– ident: ref301/cit301
  doi: 10.1039/C6DT03159E
– ident: ref115/cit115
  doi: 10.1111/j.1432-1033.1997.t01-1-00789.x
– ident: ref78/cit78
  doi: 10.1021/acs.accounts.9b00063
– ident: ref218/cit218
  doi: 10.1128/JB.173.18.5705-5711.1991
– ident: ref96/cit96
  doi: 10.1042/bj2530587
– ident: ref304/cit304
  doi: 10.1021/ja00138a033
– ident: ref217/cit217
  doi: 10.1042/bj2490745
– ident: ref315/cit315
  doi: 10.1073/pnas.1519696112
– ident: ref6/cit6
  doi: 10.1128/AEM.65.11.4935-4942.1999
– ident: ref43/cit43
  doi: 10.1073/pnas.1102773108
– ident: ref92/cit92
  doi: 10.1021/cr400479b
– ident: ref278/cit278
  doi: 10.1002/anie.200502667
– ident: ref5/cit5
  doi: 10.1029/1999GB900014
– ident: ref99/cit99
  doi: 10.1021/bi00373a005
– ident: ref276/cit276
  doi: 10.1021/acs.chemrev.6b00091
– ident: ref11/cit11
  doi: 10.3389/fmicb.2013.00201
– ident: ref200/cit200
  doi: 10.1146/annurev.biochem.78.070907.103812
– ident: ref141/cit141
  doi: 10.1042/bj2440197
– ident: ref164/cit164
  doi: 10.1021/ja00074a050
– ident: ref48/cit48
  doi: 10.1126/science.1205358
– ident: ref295/cit295
  doi: 10.1042/bj2890395
– ident: ref73/cit73
  doi: 10.1038/325372a0
– ident: ref94/cit94
  doi: 10.1021/bi981509y
– ident: ref178/cit178
– ident: ref237/cit237
  doi: 10.1126/science.1206883
– ident: ref179/cit179
– ident: ref162/cit162
  doi: 10.1021/bi951430i
– ident: ref320/cit320
  doi: 10.1002/anie.201800189
– ident: ref2/cit2
  doi: 10.1016/j.freeradbiomed.2019.01.050
– ident: ref184/cit184
  doi: 10.1021/acs.inorgchem.6b02540
– ident: ref245/cit245
  doi: 10.1073/pnas.74.8.3249
– ident: ref255/cit255
  doi: 10.1042/bj2240877
– ident: ref70/cit70
  doi: 10.1038/387370a0
– ident: ref138/cit138
  doi: 10.1002/chem.200400382
– ident: ref194/cit194
  doi: 10.1039/C5DT03223G
– ident: ref137/cit137
  doi: 10.1021/ja00305a007
– ident: ref58/cit58
  doi: 10.1073/pnas.0602651103
– ident: ref61/cit61
  doi: 10.1126/science.1196954
– ident: ref110/cit110
  doi: 10.1021/ic802192w
– ident: ref3/cit3
  doi: 10.3389/fmicb.2017.00267
– volume: 262
  start-page: 14945
  year: 1987
  ident: ref105/cit105
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48120-3
– ident: ref42/cit42
  doi: 10.1038/nature08302
– ident: ref203/cit203
  doi: 10.1104/pp.43.8.1185
– ident: ref9/cit9
  doi: 10.3109/10408418809104465
– ident: ref50/cit50
  doi: 10.1038/s41467-018-05272-8
– ident: ref270/cit270
  doi: 10.1021/ja303739g
– ident: ref277/cit277
  doi: 10.1021/acs.chemrev.6b00168
– ident: ref53/cit53
  doi: 10.1016/j.bbapap.2012.01.010
– ident: ref72/cit72
  doi: 10.1021/ja00220a066
– ident: ref257/cit257
  doi: 10.1042/bj2240887
– ident: ref106/cit106
  doi: 10.1073/pnas.0603223103
– ident: ref210/cit210
  doi: 10.1021/bi00521a007
– ident: ref135/cit135
  doi: 10.1021/bi00528a034
– ident: ref286/cit286
  doi: 10.1016/j.ccr.2013.02.010
– ident: ref54/cit54
  doi: 10.1021/bi00181a031
– ident: ref75/cit75
  doi: 10.1007/s00775-018-1602-4
– volume: 269
  start-page: 18723
  year: 1994
  ident: ref39/cit39
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32225-1
– ident: ref23/cit23
  doi: 10.1128/mBio.00310-18
– ident: ref143/cit143
  doi: 10.1021/cr950057h
– ident: ref314/cit314
  doi: 10.1074/jbc.M111.229344
– ident: ref289/cit289
  doi: 10.1126/science.1211906
– ident: ref249/cit249
  doi: 10.1128/mBio.00307-15
– ident: ref242/cit242
  doi: 10.1002/anie.201406863
– ident: ref46/cit46
  doi: 10.1126/science.1224603
– ident: ref288/cit288
  doi: 10.1038/nchem.1620
– ident: ref114/cit114
  doi: 10.1021/ja980598z
– volume: 262
  start-page: 12900
  year: 1987
  ident: ref181/cit181
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45141-1
– ident: ref38/cit38
  doi: 10.1007/BF00292722
– ident: ref163/cit163
  doi: 10.1021/ja00105a080
– ident: ref311/cit311
  doi: 10.1002/ejic.201100029
– ident: ref267/cit267
  doi: 10.1039/C9SC03610E
– ident: ref124/cit124
  doi: 10.1016/0162-0134(88)80039-4
– ident: ref243/cit243
  doi: 10.1002/cbic.201500305
– ident: ref186/cit186
  doi: 10.1021/ja067562o
– ident: ref198/cit198
– ident: ref76/cit76
  doi: 10.1007/s007750100263
– ident: ref142/cit142
  doi: 10.1021/bi00371a001
– ident: ref280/cit280
  doi: 10.1038/253039b0
– ident: ref196/cit196
  doi: 10.1042/bj3550569
– ident: ref318/cit318
  doi: 10.1039/c1dt10240k
– ident: ref12/cit12
  doi: 10.1016/j.febslet.2010.02.064
– ident: ref117/cit117
  doi: 10.1126/science.1073877
– ident: ref273/cit273
  doi: 10.1021/jacs.9b04474
– ident: ref316/cit316
  doi: 10.1039/C5CP04034E
– ident: ref180/cit180
  doi: 10.1021/acs.biochem.7b01142
– ident: ref52/cit52
  doi: 10.1002/anie.201907593
– ident: ref133/cit133
  doi: 10.1046/j.1432-1327.2002.02804.x
– ident: ref56/cit56
  doi: 10.1073/pnas.0602647103
– ident: ref204/cit204
  doi: 10.1007/BF00425127
– ident: ref169/cit169
  doi: 10.1002/anie.201505930
– ident: ref232/cit232
  doi: 10.1042/bj1020001C
– ident: ref182/cit182
  doi: 10.1021/ja000254k
– ident: ref108/cit108
  doi: 10.1021/ja9712837
– ident: ref136/cit136
  doi: 10.1021/bi00286a011
– ident: ref147/cit147
  doi: 10.1128/JB.175.15.4907-4910.1993
– ident: ref59/cit59
  doi: 10.1073/pnas.1609574113
– ident: ref33/cit33
  doi: 10.1021/bi7025003
– ident: ref45/cit45
  doi: 10.1002/anie.201102724
– ident: ref256/cit256
  doi: 10.1042/bj2240895
– ident: ref84/cit84
  doi: 10.1002/j.1460-2075.1982.tb01276.x
– ident: ref258/cit258
  doi: 10.1042/bj2240903
– ident: ref20/cit20
  doi: 10.3390/life4040944
– ident: ref259/cit259
  doi: 10.1021/acs.biochem.8b00784
– ident: ref103/cit103
  doi: 10.1073/pnas.69.11.3142
– ident: ref36/cit36
  doi: 10.1074/jbc.R113.454041
– ident: ref226/cit226
  doi: 10.1042/bj1930971
– ident: ref118/cit118
  doi: 10.1126/science.8484118
– ident: ref157/cit157
  doi: 10.1042/bj2500299
– ident: ref287/cit287
  doi: 10.1021/ar0501121
– ident: ref30/cit30
  doi: 10.1042/EBC20160071
– ident: ref31/cit31
  doi: 10.1146/annurev-biochem-060614-034108
– ident: ref41/cit41
  doi: 10.1073/pnas.1510409112
– volume: 264
  start-page: 6619
  year: 1989
  ident: ref90/cit90
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83473-1
– ident: ref281/cit281
  doi: 10.1038/259204a0
– ident: ref248/cit248
  doi: 10.1002/anie.201410412
– ident: ref297/cit297
  doi: 10.1007/BF00690162
– ident: ref146/cit146
  doi: 10.1074/jbc.M304264200
– ident: ref231/cit231
  doi: 10.1016/0005-2744(67)90114-3
– ident: ref176/cit176
  doi: 10.1042/bj2930101
– ident: ref85/cit85
  doi: 10.1021/bi001705g
– volume: 263
  start-page: 1364
  year: 1988
  ident: ref95/cit95
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)57311-2
– ident: ref251/cit251
  doi: 10.1002/ange.201608806
– ident: ref229/cit229
  doi: 10.1016/0022-1902(66)80011-8
– ident: ref213/cit213
  doi: 10.1021/bi00589a014
– ident: ref291/cit291
  doi: 10.1021/bi036038g
– ident: ref221/cit221
  doi: 10.1021/jacs.8b02319
– ident: ref13/cit13
  doi: 10.1128/JB.187.22.7784-7794.2005
– ident: ref98/cit98
  doi: 10.1016/0162-0134(94)85115-8
– ident: ref264/cit264
– ident: ref263/cit263
  doi: 10.1021/bi00326a012
– ident: ref310/cit310
  doi: 10.1016/S0162-0134(02)00480-4
– ident: ref152/cit152
  doi: 10.1021/bi0017834
– ident: ref306/cit306
  doi: 10.1021/ja9715096
– ident: ref140/cit140
  doi: 10.1021/jacs.9b06546
– ident: ref87/cit87
  doi: 10.1038/nchembio.2245
– ident: ref150/cit150
  doi: 10.1126/science.aar2765
– ident: ref22/cit22
  doi: 10.1111/nph.14166
– ident: ref26/cit26
  doi: 10.1111/j.1472-4669.2011.00278.x
– ident: ref62/cit62
  doi: 10.1126/science.1070010
– ident: ref189/cit189
  doi: 10.1042/bj2610181
– ident: ref268/cit268
  doi: 10.1021/ja043596p
– ident: ref199/cit199
  doi: 10.1021/ja0539342
– ident: ref34/cit34
  doi: 10.1073/pnas.0506967102
– ident: ref298/cit298
  doi: 10.1042/bj2380437
– ident: ref83/cit83
  doi: 10.1021/acs.accounts.8b00112
– ident: ref272/cit272
  doi: 10.1021/ja205304t
– ident: ref156/cit156
  doi: 10.1039/C8CC03793K
– ident: ref209/cit209
– volume: 253
  start-page: 1001
  year: 1978
  ident: ref130/cit130
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)38102-4
– ident: ref158/cit158
– ident: ref175/cit175
  doi: 10.1128/JB.170.1.27-33.1988
– ident: ref235/cit235
  doi: 10.1021/cr00045a002
– ident: ref205/cit205
  doi: 10.1042/bj2560429
– ident: ref57/cit57
  doi: 10.1021/ja9035225
– ident: ref79/cit79
  doi: 10.1021/bi061697p
– ident: ref283/cit283
  doi: 10.1021/ja020186x
– ident: ref208/cit208
  doi: 10.1007/s00775-016-1423-2
– ident: ref187/cit187
  doi: 10.1038/ncomms10902
– ident: ref307/cit307
  doi: 10.1021/ja971088s
– ident: ref47/cit47
  doi: 10.1126/science.1229088
– ident: ref71/cit71
  doi: 10.1126/science.1115653
– ident: ref303/cit303
  doi: 10.1039/C9CP02073J
– ident: ref279/cit279
  doi: 10.1016/S0022-328X(00)92481-1
– ident: ref202/cit202
  doi: 10.1016/0005-2744(80)90180-1
– ident: ref154/cit154
  doi: 10.1021/bi00009a008
– ident: ref81/cit81
  doi: 10.1074/jbc.M403156200
– ident: ref173/cit173
  doi: 10.1128/JB.178.5.1445-1450.1996
– ident: ref168/cit168
  doi: 10.1021/ja1019657
– ident: ref230/cit230
  doi: 10.1021/bi0514109
– ident: ref312/cit312
  doi: 10.1074/jbc.M410247200
– ident: ref123/cit123
  doi: 10.1006/jmbi.1999.3107
SSID ssj0005527
Score 2.6343303
SecondaryResourceType review_article
Snippet Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is...
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N . Nitrogenase is...
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N₂. Nitrogenase is...
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N 2 . Nitrogenase is...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5107
SubjectTerms biosynthesis
catalytic activity
chemical bonding
Chemistry
Cluster chemistry
Crystal structure
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Iron
Models, Molecular
Molybdenum
Molybdenum - chemistry
Molybdenum - metabolism
Monomers
multigene family
Nitrogen
Nitrogen - chemistry
Nitrogen - metabolism
Nitrogen Fixation
nitrogenase
Nitrogenase - chemistry
Nitrogenase - metabolism
Nitrogenation
Peptides and proteins
spectral analysis
Structural analysis
Title Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases
URI http://dx.doi.org/10.1021/acs.chemrev.9b00704
https://www.ncbi.nlm.nih.gov/pubmed/32129988
https://www.proquest.com/docview/2417479297
https://www.proquest.com/docview/2371861413
https://www.proquest.com/docview/2439428869
https://www.osti.gov/servlets/purl/1802675
https://pubmed.ncbi.nlm.nih.gov/PMC7491575
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5N3cP2wjZgEGDISHvgoYHaTu3mEVWrKiT6wIrEW2Q7jqhok6lNJ42_fndt0lJAFa_2OfKPc-6zz_cdwE9pjRVp6sKOb2VhhD_JEAtMyLWxjgsvdUaBwjcD1b-Lru_b98-C1V948AW_NA4n_8FPKCULEfhpYv_8KBRuY0JC3d_rFx11hlZyGijVrkmG3v4ImSM32zBHjQK31VtQ8-WLyWcmqPcFBnUgz_LlyePFvLQX7uk1r-P7RvcVdiowyq6W2vMNPvh8Fz516xxwe9C99RT4QPklmuzGU5TwaDZpMpOnjNzFEzv-x4qMIYpkV-PqbvGvZ4NROS1QNdFEzvZh2Ps17PbDKu1CaNpxXIbOxJHTymkX44ARgViEFcpaYobLhMUDiTaKcFnmI2GMpLtQ7j3KRdjKye_QyIvcHwJL44xbbjPVkmkUZ4iFWs6lDjGTRGAlbADnOP6k2jWzZOEQFzyhwmpSkmpSAhD1OiWuYi-nJBrj7Y2aq0Z_luQd28WPSQESxB5EoOvopZErE-LIw2NVACe1Xqx7jPgHz2MIMXUAZ6tqXCRyu5jcF3OUkWj_EQVxuUWGApRFp6PiAA6WqrbqsUR0gYfiTgB6QwlXAsQQvlmTjx4WTOE6ijni8aP3z_MxfBZ0o9BSoYhOoFFO5_4Hwq7Sni4223_EJCqb
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6hclguvB9hFzASBw7NUtup3RyrilWBbQ_QlfYW2Y6jrWgTtEmR4NczkyYpXa0quDpjy2OP488ezzcA76Q1VqSpC0d-kIUR_iRDLDAh18Y6LrzUGQUKz-ZqehF9vhxeNkFhFAuDnSixpbJ24u_YBfgHKkM11pSZhXj8NJGA3kU4Isiux5Nvu4cdbaJW8h0oNWy5hm5vhHYlV-7tSr0CV9dtiPPmw8m_dqKzB3DR6VA_QPl-uqnsqft9g97xf5V8CPcbaMrGW1t6BHd8_hiOJm1GuCcw-eopDIKyTfTZzFPM8LJc95nJU0bO47Vd_WJFxhBTsvGquWn86dl8WV0XaKi4YZZPYXH2cTGZhk0ShtAM47gKnYkjp5XTLka9EY9YBBnKWuKJy4TF44k2ilBa5iNhjKSbUe49ykVYy8ln0MuL3L8AlsYZt9xmaiDTKM4QGQ2cSx0iKIkwS9gA3qP-SbOGyqR2jwueUGEzKEkzKAGIdroS13CZU0qN1eFK_a7Sjy2Vx2HxY7KDBJEI0ek6enfkqoQY8_CQFcBJax67HiMawtMZAk4dwNvuM04SOWFM7osNykhEA4iJuDwgQ-HKYjRScQDPtxbX9Vgi1sAj8igAvWeLnQDxhe9_yZdXNW-4jmKO6Pzlv4_zGziaLmbnyfmn-ZdjuCformGgQhGdQK-63vhXCMgq-7pef38ASdwy_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NRQJe-P4IGxAkHnhoRm2ndvJYFarxsQrBkMZTZDu2qGiTaUmR4K_nLk0yOk0V4tU5Wz77HP_s8_0O4KUw2vA8t1HiRj6K8ScZYYGOmNLGMu6E8hQofDyXR1_j96fj0z1IulgY7ESFLVWNE59W9VnuW4YB9prKUZUVZWchLj9FRKDXyHFHtj2Zfrl43NElayX_gZTjjm_o6kZoZ7LV1s40KHGFXYU6Lz-e_Gs3mt2Gb70ezSOUH4fr2hza35coHv9H0Ttwq4Wo4WRjU3dhzxX34Ma0ywx3H6afHYVDUNaJYXjsKHZ4Ua2GoS7ykJzIK7P8FZY-RGwZTpbtjeNPF84X9XmJBosbZ_UATmZvT6ZHUZuMIdLjNK0jq9PYKmmVTVF3xCUGwYY0hvjiPDd4TFFaElrzLuZaC7ohZc6hXIy1rHgIg6Is3GMI89Qzw4yXI5HHqUeENLI2t4ikBMItbgJ4hfpn7VqqssZNzllGhe2gZO2gBMC7Kctsy2lOqTWWuysN-0pnG0qP3eL7ZAsZIhKi1bX0_sjWGTHn4WErgIPORC56jKgIT2kIPFUAL_rPOEnkjNGFK9coIxAVIDZiYocMhS3zJJFpAI82Vtf3WCDmwKNyEoDassdegHjDt78Ui-8Nf7iKU4Yo_cm_j_NzuP7pzSz7-G7-YR9ucrpyGMmIxwcwqM_X7inisto8a5bgHwbdNX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity%2C+Mechanism%2C+and+Assembly+of+the+Alternative+Nitrogenases&rft.jtitle=Chemical+reviews&rft.au=Jasniewski%2C+Andrew+J&rft.au=Lee%2C+Chi+Chung&rft.au=Ribbe%2C+Markus+W&rft.au=Hu%2C+Yilin&rft.date=2020-06-24&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=120&rft.issue=12&rft.spage=5107&rft_id=info:doi/10.1021%2Facs.chemrev.9b00704&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon